Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7238

Characteristics and sources of intense geoelectric fields in the United States: Comparative analysis of multiple geomagnetic storms

Intense geoelectric fields during geomagnetic storms drive geomagnetically induced currents in power grids and other infrastructure, yet there are limited direct measurements of these storm-time geoelectric fields. Moreover, most previous studies examining storm-time geoelectric fields focused on single events or small geographic regions, making it difficult to determine the typical source(s) of i
Authors
Xueling Shi, Michael D Hartinger, Joseph B. H. Baker, Benjamin Scott Murphy, Paul A. Bedrosian, Anna Kelbert, Erin (Josh) Rigler

Fire (plus) flood (equals) beach: Coastal response to an exceptional river sediment discharge event

Wildfire and post-fire rainfall have resounding effects on hillslope processes and sediment yields of mountainous landscapes. Yet, it remains unclear how fire–flood sequences influence downstream coastal littoral systems. It is timely to examine terrestrial–coastal connections because climate change is increasing the frequency, size, and intensity of wildfires, altering precipitation rates, and ac
Authors
Jonathan Warrick, Kilian Vos, Amy E. East, Sean Vitousek

Very low frequency earthquakes in between the seismogenic and tremor zones in Cascadia?

Megathrust earthquakes and their associated tsunamis cause some of the worst natural disasters. In addition to earthquakes, a wide range of slip behaviors are present at subduction zones, including slow earthquakes that span multiple orders of spatial and temporal scales. Understanding these events may shed light on the stress or strength conditions of the megathrust fault. Out of all types of slo
Authors
Wenyuan Fan, Andrew Barbour, Jeffrey McGuire, Yihe Huang, Guoqing Lin, Elizabeth S. Cochran, Ryo Okuwaki

Landslides in Minnesota

Landslides in Minnesota have caused loss of life, damaged infrastructure, and negatively affected Minnesota’s natural resources. Landslides increase the amount of sediment contributed to lakes and rivers, with negative consequences for water quality and aquatic habitats. Recent mapping reveals that landslide susceptible areas within Minnesota primarily occur on steep slopes adjacent to rivers, lak
Authors
Stephen B. DeLong, Carrie E. Jennings, Karen B. Gran

Shallow faulting and folding in the epicentral area of the 1886 Charleston, South Carolina, earthquake

The moment magnitude (⁠Mw�w⁠) ∼7 earthquake that struck Charleston, South Carolina, on 31 August 1886 is the largest historical earthquake in the United States east of the Appalachian Mountains. The fault(s) that ruptured during this earthquake has never been conclusively identified, and conflicting fault models have been proposed. Here we interpret reprocessed seismic reflection profiles, reproce
Authors
Thomas L. Pratt, Anjana K. Shah, R.C Counts, J. Wright Horton,, M.C. Chapman

Electrical properties and anisotropy of schists and fault rocks from New Zealand’s Southern Alps under confining pressure

Magnetotelluric models spanning the Pacific–Australian Plate boundary in New Zealand’s South Island indicate a localized zone of low electrical resistivity that is spatially coincident with theductile mid-crustal part of the Alpine Fault Zone (AFZ). We explored the source of this anomaly bymeasuring the electrical properties of samples collected from surface outcrops approaching the AFZthat have a
Authors
Katherine E Kluge, Virginia G. Toy, David A. Lockner

Bedrock geochemistry and alteration history of the clay-bearing Glen Torridon region of Gale crater, Mars

Glen Torridon is a topographic trough located on the slope of Aeolis Mons, Gale crater, Mars. It corresponds to what was previously referred to as the “clay-bearing unit”, due to the relatively strong spectral signatures of clay minerals (mainly ferric smectites) detected from orbit. Starting in January 2019, the Curiosity rover explored Glen Torridon for more than 700 sols (Martian days). The obj
Authors
Erwin Dehouck, Agnes Cousin, Nicolas Mangold, Jens Frydenvang, Olivier Gasnault, Olivier Forni, William Rapin, Patrick J. Gasda, Gwenael Caravaca, Gael David, Candice C. Bedford, Jeremie Lasue, Pierre-Yves Meslin, Kristin Rammelkamp, Marine Desjardins, Stephane Le Mouelic, Michael T. Thorpe, Valerie K. Fox, Kristen A. Bennett, Alexander Bryk, Nina L. Lanza, Sylvestre Maurice, Roger C. Wiens

An efficient, analytic solution using order statistics for probabilistic seismic‐hazard assessment without the Poisson assumption

Standard approaches to probabilistic seismic‐hazard assessment (PSHA) assume that earthquakes are random, independent events that follow a Poisson distribution of occurrences in a given time period (Cornell, 1968). To overcome the limitations of the Poisson assumption, such as ignoring earthquake clustering, we introduce an analytic method for PSHA that uses order statistics to allow for arbitrary
Authors
Andrew J. Michael, Andrea L. Llenos

Global and regional sea level rise scenarios for the United States

This report and accompanying datasets from the U.S. Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force provide 1) sea level rise scenarios to 2150 by decade that include estimates of vertical land motion and 2) a set of extreme water level probabilities for various heights along the U.S. coastline. These data are available at 1-degree grids along the U.S. coastline
Authors
William Sweet, Ben Hamlington, Robert E. Kopp, Christopher Weaver, Patrick L. Barnard, David Bekaert, William Brooks, Michael Craghan, Gregory Dusek, Thomas Frederikse, Gregory Garner, Ayesha S. Genz, John P. Krasting, Eric Larour, Doug Marcy, John J. Marra, Jayantha Obeysekera, Mark Osler, Matthew Pendleton, Daniel Roman, Lauren Schmied, Will Veatch, Kathleen D. White, Casey Zuzak

Quantifying the sensitivity of microearthquake slip inversions to station distribution using a dense nodal array

To investigate the sensitivity of slip inversions to station distribution and choice of empirical Green’s function (EGF), we examine three microearthquakes that occurred within the high‐density LArge‐n Seismic Survey in Oklahoma (LASSO) nodal seismic array. The LASSO array’s dense distribution of 1825 geophones provides an exceptional level of spatial and azimuthal coverage, allowing for more accu
Authors
Colin Nathanael Pennington, Hilary Chang, Justin Rubinstein, Rachel E Abercrombie, Nori Nakata, Takahiko Uchide, Elizabeth S. Cochran

A unified perspective of seismicity and fault coupling along the San Andreas Fault

The San Andreas Fault (SAF) showcases the breadth of possible earthquake sizes and occurrence behavior; in particular, the central SAF is a microcosm of such diversity. This section also exhibits the spectrum of fault coupling from locked to creeping. Here, we show that the observations of aseismic slip, temporal clustering of seismicity, and spatial variations in earthquake size distributions are
Authors
Y.-K. Liu, Z. Ross, Elizabeth S. Cochran, N. Lapusta

Validating predicted site response in sedimentary basins from 3D ground motion simulations

We introduce procedures to validate site response in sedimentary basins as predicted using ground motion simulations. These procedures aim to isolate contributions of site response to computed intensity measures relative to those from seismic source and path effects. In one of the validation procedures, simulated motions are analyzed in the same manner as earthquake recordings to derive non-ergodi
Authors
Chukwuebuka C Nweke, Jonathan P. Stewart, Robert Graves, Christine A. Goulet, Scott J Brandenberg