Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7239

A ground‐motion prediction model for shallow crustal earthquakes in Greece

Using a recently completed database of uniformly processed strong‐motion data recorded in Greece, we derive a ground‐motion prediction model (GMPM) for horizontal‐component peak ground velocity, peak ground acceleration, and 5% damped pseudoacceleration response spectra, at 105 periods ranging from 0.01 to 10 s. The equations were developed by modifying a global GMPM, to account for more rapid att
Authors
David Boore, Jonathan P. Stewart, Andreas Skarlatoudis, Emel Seyhan, Basil Margaris, Nikos Theodoulidis, Emmanual Scordilis, Ionnis Kalogeras, Nikos Klimis, Nikos Melis

A unified model of crustal stress heterogeneity from borehole breakouts and earthquake focal mechanisms

Observations of crustal stress orientation from the regional inversion of earthquake focal mechanisms often conflict with those from borehole breakouts, possibly indicating local stress heterogeneity, either laterally or with depth. To investigate this heterogeneity, we compiled SHmax estimates from previous studies for 57 near‐vertical boreholes with measured breakout azimuths across the Los Ange
Authors
Karen Luttrell, Jeanne L. Hardebeck

The impacts of the 2015/2016 El Niño on California's sandy beaches

The El Niño Southern Oscillation is the most dominant mode of interannual climate variability in the Pacific. The 2015/2016 El Niño event was one of the strongest of the last 145 years, resulting in anomalously high wave energy across the U.S. West Coast, and record coastal erosion for many California beaches. To better manage coastal resources, it is critical to understand the impacts of both sho
Authors
Schuyler A Smith, Patrick L. Barnard

Rapid sensitivity analysis for reducing uncertainty in landslide hazard assessments

One of the challenges in assessing temporal and spatial aspects of landslide hazard using process-based models is estimating model input parameters, especially in areas where limited measurements of soil and rock properties are available. In an effort to simplify and streamline parameter estimation, development of a simple, rapid approach to sensitivity analysis relies on field measurements of lan
Authors
Rex L. Baum

On the use of statistical analysis to understand submarine landslide processes and assess their hazard

Because of their inaccessibility, submarine landslides are typically studied individually and at great effort and expense to provide knowledge of the specific site conditions where these landslides occur. Statistical analysis of submarine landslide scars can offer generalized perspectives on the processes that initiate submarine landslides and can help toward hazard assessment in areas that have n
Authors
Uri S. ten Brink, Eric L. Geist

Progress and lessons learned from responses to landslide disasters

Landslides have the incredible power to transform landscapes and also, tragically, to cause disastrous societal impacts. Whereas the mechanics and effects of many landslide disasters have been analyzed in detail, the means by which landslide experts respond to these events has garnered much less attention. Herein, we evaluate nine landslide response case histories conducted by the U.S. Geological
Authors
Brian D. Collins, Mark E. Reid, Jeffrey A. Coe, Jason W. Kean, Rex L. Baum, Randall W. Jibson, Jonathan W. Godt, Stephen Slaughter, Greg M. Stock

Spatial clustering of aftershocks impacts the performance of physics‐based earthquake forecasting models

I explore why physics‐based models of earthquake triggering rarely outperform statistical models in prospective testing, outside of limited spatial‐temporal windows. Pseudo‐prospective tests on suites of synthetic aftershock sequences show that a major factor is the level of unmodeled spatial clustering of the direct aftershocks triggered by the mainshock. The synthetic sequences are generated fro
Authors
Jeanne L. Hardebeck

A long-term geothermal observatory across subseafloor gas hydrates, IODP Hole U1364A, Cascadia accretionary prism

We report 4 years of temperature profiles collected from May 2014 to May 2018 in Integrated Ocean Drilling Program Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The temperature data extend to depths of nearly 300 m below seafloor (mbsf), spanning the gas hydrate stability zone at the location and a clear bottom-simulating reflector (BSR) at ∼230 mbsf. When the hole
Authors
K. Elizabeth Becker, E. E. Davis, M. Hessemann, J. A. Collins, Jeffrey McGuire

In‐situ mass balance estimates offshore Costa Rica

The Costa Rican convergent margin has been considered a type erosive margin, with erosional models suggesting average losses up to −153 km3/km/m.y. However, three‐dimensional (3D) seismic reflection and Integrated Ocean Drilling Program data collected offshore the Osa Peninsula images accretionary structures and vertical motions that conflict with the forearc basal erosion model. Here we integrate
Authors
Joel Edwards, Jared W. Kluesner, Eli Silver, Rachel Lauer, Nathan Bangs, Brian Boston

The normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence

The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal‐faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent plate bounda
Authors
Egill Hauksson, Brian J. Olsen, Alex R. R. Grant, Jennifer R Andrews, Angela I. Chung, Susan E. Hough, Hiroo Kanamori, Sara McBride, Andrew J. Michael, Morgan T. Page, Zachary E. Ross, Deborah Smith, Sotiris Valkaniotis

Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection

Previously, Tsurutani and Lakhina (2014, https://doi.org/10.1002/2013GL058825) created estimates for a “perfect” interplanetary coronal mass ejection and performed simple calculations for the response of geospace, including . In this study, these estimates are used to drive a coupled magnetohydrodynamic-ring current-ionosphere model of geospace to obtain more physically accurate estimates of the g
Authors
Daniel T. Welling, Jeffrey J. Love, E. Joshua Rigler, Denny M. Oliveira, Colin M. Komar, Steven Morley

Probabilistic application of an integrated catchment-estuary-coastal system model to assess the evolution of inlet-interrupted coasts over the 21st century

Inlet-interrupted sandy coasts are dynamic and complex coastal systems with continuously evolving geomorphological behaviors under the influences of both climate change and human activities. These coastal systems are of great importance to society (e.g., providing habitats, navigation, and recreational activities) and are affected by both oceanic and terrestrial processes. Therefore, the evolution
Authors
J. Bamunawala, Ali Dastgheib, Roshanka Ranasinghe, Ad van der Spek, Shreedhar Maskey, A. Brad Murray, Patrick L. Barnard, Trang Minh Duong, T.A.J.G. Sirisena