Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7238

Kinematic evolution of a large paraglacial landslide in the Barry Arm fjord of Alaska

Our warming climate is adversely affecting cryospheric landscapes via glacial retreat, permafrost degradation, and associated slope destabilization. In Prince William Sound, Alaska, the rapid retreat of Barry Glacier has destabilized the slopes flanking the glacier, resulting in numerous landslides. The largest of these landslides (∼500 Mm3 in volume) is more than 2 km wide and has the potential t
Authors
Lauren N. Schaefer, Jeffrey A. Coe, Katreen Wikstrom Jones, Brian D. Collins, Dennis M. Staley, Michael E. West, Ezgi Karasozen, Charles Prentice-James Miles, Gabriel J. Wolken, Ronald P. Daanan, Kelli Wadsworth Baxstrom

Steady-state forms of channel profiles shaped by debris flow and fluvial processes

Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on st
Authors
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, Katherine R. Barnhart

Evidence of Seattle Fault earthquakes from patterns of deep-seated landslides

Earthquake‐induced landslides can record information about the seismic shaking that generated them. In this study, we present new mapping, Light Detection and Ranging‐derived roughness dating, and analysis of over 1000 deep‐seated landslides from the Puget Lowlands of Washington, U.S.A., to probe the landscape for past Seattle fault earthquake information. With this new landslide inventory, we obs
Authors
Erich Herzig, Alison Duvall, Adam Booth, Ian Patrick Stone, Erin Wirth, Sean Richard LaHusen, Joseph Wartman, Alex R. R. Grant

Improved computational methods for probabilistic liquefaction hazard analysis

Current procedures for analysis of and design against liquefaction hazards focus primarily on the use of probabilistic ground motions at a single ground-shaking hazard level, with the cyclic loading represented by a peak ground acceleration (PGA) corresponding to a target return period and a single representative moment magnitude Mw. These parameters are typically used in conjunction with determin
Authors
Andrew James Makdisi, Steven L. Kramer

Rapid surface rupture mapping from satellite data: The 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence

The 6 February 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence produced > 500 km of surface rupture primarily on the left‐lateral East Anatolian (~345 km) and Çardak (~175 km) faults. Constraining the length and magnitude of surface displacement on the causative faults is critical for loss estimates, recovery efforts, rapid identification of impacted infrastructure, and fault displacemen
Authors
Nadine G. Reitman, Richard W. Briggs, William D. Barnhart, Alexandra Elise Hatem, Jessica Ann Thompson Jobe, Christopher DuRoss, Ryan D. Gold, John David Mejstrik, Camille Collett, Richard D Koehler, Sinan Akçiz

Increasing ocean wave energy observed in Earth’s seismic wavefield since the late 20th century

Ocean waves excite continuous globally observable seismic signals. We use data from 52 globally distributed seismographs to analyze the vertical component primary microseism wavefield at 14–20 s period between the late 1980s and August 2022. This signal is principally composed of Rayleigh waves generated by ocean wave seafloor tractions at less than several hundred meters depth, and is thus a prox
Authors
Richard C. Aster, Adam T. Ringler, Robert E. Anthony, Thomas A. Lee

Moon-forming impactor as a source of Earth’s basal mantle anomalies

Seismic images of Earth’s interior have revealed two continent-sized anomalies with low seismic velocities, known as the large low-velocity provinces (LLVPs), in the lowermost mantle. The LLVPs are often interpreted as intrinsically dense heterogeneities that are compositionally distinct from the surrounding mantle. Here we show that LLVPs may represent buried relics of Theia mantle material (TMM)
Authors
Qian Yuan, Mingming Li, Steven J. Desch, Byeongkwan Ko, Hongping Deng, Edward J. Garnero, Travis S. J. Gabriel, Jacob A. Kegerreis, Yoshinori Miyazaki, Vincent Eke, Paul D. Asimow

U.S. Geological Survey risk research community of practice 2021 workshop report—Workshop on considering equitable engagement in research design

The U.S. Geological Survey (USGS) Risk Research and Applications Community of Practice (Risk CoP) is a bureau-wide forum to share resources and discuss issues relevant to “conducting and applying scientific research in hazards—the dangerous processes or phenomena that may cause damage—to enhance the reduction of risk—the potential for societally relevant losses caused by hazards” (Ludwig and other
Authors
Emily Brooks, Alice Pennaz, Matthew Jurjonas

Relationship between explosive and effusive volcanism in the Montes Apenninus region of the Moon

Lunar Pyroclastic Deposits (LPDs) are sites of explosive volcanism and often occur in areas of effusive volcanism on the Moon. On Earth, it has been observed that most volcanism has both effusive and explosive phases, whereas on the Moon, these two types of volcanism have typically been considered separately. We hypothesize that the relationship between explosive and effusive volcanism on the Moon
Authors
Lori M Pigue, Kristen A. Bennett, Briony H.N. Horgan, Lisa Gaddis

Landslide initiation thresholds in data-sparse regions: Application to landslide early warning criteria in Sitka, Alaska, USA

Probabilistic models to inform landslide early warning systems often rely on rainfall totals observed during past events with landslides. However, these models are generally developed for broad regions using large catalogs, with dozens, hundreds, or even thousands of landslide occurrences. This study evaluates strategies for training landslide forecasting models with a scanty record of landslide-t
Authors
Annette Patton, Lisa Luna, Josh J. Roering, Aaron Jacobs, Oliver Korup, Benjamin B. Mirus

The Mojave section of the San Andreas fault (California), 1: Shaping the terrace stratigraphy of Littlerock Creek through the competition between rapid strike-slip faulting and lateral stream erosion over the last 40ka.

To determine the post-40 ka slip-rate along the Mojave section of the San Andreas Fault (MSAF) we re-analyze the sedimentary record preserved where Little Rock (LR) Creek flows across the fault. At this location, interaction between the northeast-flowing stream and right-lateral fault has resulted in the abandonment and preservation of 11 strath terraces and one paleo-floodplain in the downstream
Authors
Adrien Moulin, Eric Cowgill, Katherine Scharer, Devin McPhillips, Arjun Heimsath

The 1886 Charleston, South Carolina, Earthquake: Relic railroad offset reveals rupture

In the absence of documented surface rupture during the 1 September 1886 Charleston earthquake, there has been considerable speculation about the location and mechanism of the causative fault. We use an inferred coseismic offset of the South Carolina Railroad and additional numerical constraints to develop an elastic deformation model—a west‐dipping fault following strands of two previously identi
Authors
Roger Bilham, Susan E. Hough