Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7239

The role of seismic and slow slip events in triggering the 2018 M7.1 Anchorage earthquake in the Southcentral Alaska subduction zone

The M 7.1 2018 Anchorage earthquake occurred in the bending part of the subducting North Pacific plate near the geometrical barrier formed by the underthrusting Yakutat terrane. We calculate the triggering potential related with stress redistribution from deformation sources including the M 9.2 1964 earthquake coseismic slip, postseismic deformation, slip from regional M  > 5 earthquakes, and the
Authors
Margarita Segou, Thomas E. Parsons

Holocene relative sea-level change along the tectonically active Chilean coast

We present a comprehensive relative sea-level (RSL) database for north, central, and south-central Chile (18.5°S – 43.6°S) using a consistent, systematic, and internationally comparable approach. Despite its latitudinal extent, this coastline has received little rigorous or systematic attention and details of its RSL history remain largely unexplored. To address this knowledge gap, we re-evaluate
Authors
Ed Garrett, Daniel Melnick, Tina Dura, Marco Cisternas, Lisa Ely, Robert L. Wesson, Julius Jara-Munoz, Pippa L Whitehouse

Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California

Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-paral
Authors
Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus

Subduction megathrust heterogeneity characterized from 3D seismic data

Megathrust roughness and structural complexity are thought to be controls on earthquake slip at subduction zones because they result in heterogeneity in shear strength and resolved stress. However, because active megathrust faults are difficult to observe, the causes and scales of complexity are largely unknown. Here we measured the in situ properties of the megathrust of the Middle America subduc
Authors
James D. Kirkpatrick, Joel H. Edwards, Alessandro Verdecchia, Jared W. Kluesner, Rebecca M. Harrington, Eli Silver

Hydrologically induced deformation in Long Valley Caldera and adjacent Sierra Nevada

Vertical and horizontal components of GNSS displacements in the Long Valley Caldera and adjacent Sierra Nevada range show a clear correlation with hydrological trends at both multiyear and seasonal time scales. We observe a clear vertical and horizontal seasonal deformation pattern primarily attributable to the solid earth response to hydrological surface loading at large-to-regional (Sierra Nevad
Authors
Francesca Silverii, Emily Montgomery-Brown, Adrian Borsa, Andrew Barbour

Sea-level rise exponentially increases coastal flood frequency

Sea-level rise will radically redefine the coastline of the 21st century. For many coastal regions, projections of global sea-level rise by the year 2100 (e.g., 0.5–2 meters) are comparable in magnitude to today’s extreme but short-lived increases in water level due to storms. Thus, the 21st century will see significant changes to coastal flooding regimes (where present-day, extreme-but-rare event
Authors
Mohsen Taherkhani, Sean Vitousek, Patrick L. Barnard, L Neil Frazer, Tiffany Anderson, Charles Fletcher

Science plan for improving three-dimensional seismic velocity models in the San Francisco Bay region, 2019–24

This five-year science plan outlines short-term and long-term goals for improving three-dimensional seismic velocity models in the greater San Francisco Bay region as well as how to foster a community effort in reaching those goals. The short-term goals focus on improving the current U.S. Geological Survey San Francisco Bay region geologic and seismic velocity model using existing data. The long-t
Authors
Brad T. Aagaard, Russell W. Graymer, Clifford H. Thurber, Arthur J. Rodgers, Taka'aki Taira, Rufus D. Catchings, Christine A. Goulet, Andreas Plesch

Disk-integrated thermal properties of Ceres measured at the millimeter wavelengths

We observed Ceres at three epochs in 2015 November and 2017 September and October with Atacama Large Millimeter/submillimeter Array (ALMA) 12 m array and in 2017 October with the ALMA Compact Array (ACA), all at ~265 GHz continuum (wavelengths of ~1.1 mm) to map the temperatures of Ceres over a full rotation at each epoch. We also used 2017 October ACA observations to search for HCN. The disk-aver
Authors
Jian-Yang Li, Arielle Moullet, Timothy N. Titus, Henry H. Hsieh, Mark V. Sykes

Methods for rapidly estimating velocity precision from GNSS time series in the presence of temporal correlation: A new method and comparison of existing methods

Time series of position estimates from Global Navigational Satellite System (GNSS) are used to measure the velocities of points on the surface of the Earth. Along with the velocity estimates, a measure of the precision is needed to assess the quality of the velocity measurement. Here, I evaluate rate uncertainties provided by four different methods that have been applied to geodetic time series. T
Authors
John Langbein

Genesis and evolution of ferromanganese crusts from the summit of Rio Grande Rise, southwest Atlantic Ocean

The Rio Grande Rise (RGR) is a large elevation in the Atlantic Ocean and known to host potential mineral resources of ferromanganese crusts (Fe–Mn), but no investigation into their general characteristics have been made in detail. Here, we investigate the chemical and mineralogical composition, growth rates and ages of initiation, and phosphatization of relatively shallow-water (650–825 m) Fe–Mn c
Authors
Mariana Benites, James R. Hein, Kira Mizell, Terrence Blackburn, Luigi Jovane

Practical limitations of Earthquake Early Warning

Earthquake Early Earning (EEW) entails detection of initial earthquake shaking and rapid estimation and notification to users prior to imminent, stronger shaking. EEW is coming to the U.S. West Coast. But what are the technical and social challenges to delivering actionable information on earthquake shaking before it arrives? Although there will be tangible benefits, there are also limitations. Ba
Authors
David J. Wald

USGS “Did You Feel It?” — Science and lessons from twenty years of citizen science-based macroseismology

The U.S. Geological Survey (USGS) “Did You Feel It?” (DYFI) system is an automatic method for rapidly collecting macroseismic intensity data from Internet users’ shaking and damage reports and for generating intensity maps immediately following felt earthquakes. DYFI has been in operation for nearly two decades (1999-2019) in the United States, and for nearly 15 years globally. During that period
Authors
Vince Quitoriano, David J. Wald