Skip to main content
U.S. flag

An official website of the United States government

Management Tools

USGS scientist investigate and develop a variety of tools that can be used for wildland fire management, ranging from on-the-ground land treatments designed to help reduce the spread of wildfires, to predictive tools to help managers better understand the dynamics of fires and the locations where they are most likely to occur.

Filter Total Items: 50

Postfire debris-flow hazards

Estimates of the probability and volume of debris flows that may be produced by a storm in a recently burned area, using a model with characteristics related to basin shape, burn severity, soil properties, and rainfall. Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS...
link

Postfire debris-flow hazards

Estimates of the probability and volume of debris flows that may be produced by a storm in a recently burned area, using a model with characteristics related to basin shape, burn severity, soil properties, and rainfall. Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS...
Learn More

Fire Danger Forecast

USGS Earth Resources Observation and Science (EROS), in conjunction with the US Forest Service Pacific Southwest (PSW) Region, has developed several new products for understanding and forecasting the probability of large wildland fires on all land in the conterminous U.S.
link

Fire Danger Forecast

USGS Earth Resources Observation and Science (EROS), in conjunction with the US Forest Service Pacific Southwest (PSW) Region, has developed several new products for understanding and forecasting the probability of large wildland fires on all land in the conterminous U.S.
Learn More

Role of Fire and Fuels in Ecological Restoration

Fuel loads are important drivers of fire behavior, and fire is an important natural process that can also be used as a tool for ecological restoration purposes. Land managers and fire experts attempt to track and manipulate fuel loads in order to assess fire risk, control fire behavior, and restore ecosystems. Thus, understanding the relationships between fire, vegetation dynamics, and fuel loads...
link

Role of Fire and Fuels in Ecological Restoration

Fuel loads are important drivers of fire behavior, and fire is an important natural process that can also be used as a tool for ecological restoration purposes. Land managers and fire experts attempt to track and manipulate fuel loads in order to assess fire risk, control fire behavior, and restore ecosystems. Thus, understanding the relationships between fire, vegetation dynamics, and fuel loads...
Learn More

Fire Effects and Forest Recovery

This research theme examines the impacts of prescribed fire on plant productivity, soil physical, chemical, and biological characteristics, and nutrient leaching. Results from this research will enable improved decision-making of how to manage fire-prone forests to maintain long-term forest fertility and productivity, especially across wide climate gradients characteristic of the Pacific Northwest...
link

Fire Effects and Forest Recovery

This research theme examines the impacts of prescribed fire on plant productivity, soil physical, chemical, and biological characteristics, and nutrient leaching. Results from this research will enable improved decision-making of how to manage fire-prone forests to maintain long-term forest fertility and productivity, especially across wide climate gradients characteristic of the Pacific Northwest...
Learn More

Wildland Fire Science in Forests and Deserts

Fuel conditions and fire regimes in western forests and deserts have been altered due to past land management, biological invasions, and recent extreme weather events and climate shifts. These changes have created extreme fire risk to local and regional communities, threatening their economic health related to wildland recreation, forest production, livestock operations, and other uses of public...
link

Wildland Fire Science in Forests and Deserts

Fuel conditions and fire regimes in western forests and deserts have been altered due to past land management, biological invasions, and recent extreme weather events and climate shifts. These changes have created extreme fire risk to local and regional communities, threatening their economic health related to wildland recreation, forest production, livestock operations, and other uses of public...
Learn More

Assessing Seasonal Wildfire Forecasting Methods in Alaska

In Alaska, increased wildfire activity has been linked to warming temperatures. Summers with extreme wildfire activity threaten life and property, clog the air with smoke, and challenge the state’s wildland firefighters. While the largest fires are often started by lightning and burn in remote areas, these fires require significant resources to fight when they threaten life and property. Increas
link

Assessing Seasonal Wildfire Forecasting Methods in Alaska

In Alaska, increased wildfire activity has been linked to warming temperatures. Summers with extreme wildfire activity threaten life and property, clog the air with smoke, and challenge the state’s wildland firefighters. While the largest fires are often started by lightning and burn in remote areas, these fires require significant resources to fight when they threaten life and property. Increas
Learn More

How and Why Upper Colorado River Basin Land, Water, and Fire Managers Choose to Use Drought Tools (or Not)

Preparing for and responding to drought requires integrating scientific information into complex decision making processes. In recognition of this challenge, regional drought early warning systems (DEWS) and related drought-information tools have been developed under the National Integrated Drought Information System (NIDIS). Despite the existence of many tools and information sources, however...
link

How and Why Upper Colorado River Basin Land, Water, and Fire Managers Choose to Use Drought Tools (or Not)

Preparing for and responding to drought requires integrating scientific information into complex decision making processes. In recognition of this challenge, regional drought early warning systems (DEWS) and related drought-information tools have been developed under the National Integrated Drought Information System (NIDIS). Despite the existence of many tools and information sources, however...
Learn More

USGS Data Collection: Real-Time Rain Gages for Post Conchas-Fire Flood-Early Warning System

The Las Conchas fire started on June 26, 2011, near the small community of Las Conchas in the Jemez Mountains of north-central New Mexico. When the fire was contained on August 3, 2011, it had burned 156,593 acres of mixed conifer, pinyon/juniper, and ponderosa forest. At the time, it was the largest wildfire in New Mexico history. Peak burn severity was extreme; over 60,000 acres of the total...
link

USGS Data Collection: Real-Time Rain Gages for Post Conchas-Fire Flood-Early Warning System

The Las Conchas fire started on June 26, 2011, near the small community of Las Conchas in the Jemez Mountains of north-central New Mexico. When the fire was contained on August 3, 2011, it had burned 156,593 acres of mixed conifer, pinyon/juniper, and ponderosa forest. At the time, it was the largest wildfire in New Mexico history. Peak burn severity was extreme; over 60,000 acres of the total...
Learn More

Field of Sagebrush Dreams: Planting and Restoring Functional Sagebrush in Burned Landscapes

Increased wildfire-induced loss of sagebrush in North American shrublands are outpacing natural recovery and leading to substantial habitat loss for sagebrush-obligate species like sage-grouse. The products and information developed for this project will help restoration practitioners, biologists, and land managers evaluate the efficacy of sagebrush restoration approaches as well as their ability...
link

Field of Sagebrush Dreams: Planting and Restoring Functional Sagebrush in Burned Landscapes

Increased wildfire-induced loss of sagebrush in North American shrublands are outpacing natural recovery and leading to substantial habitat loss for sagebrush-obligate species like sage-grouse. The products and information developed for this project will help restoration practitioners, biologists, and land managers evaluate the efficacy of sagebrush restoration approaches as well as their ability...
Learn More

Can Prescribed Fire Help Forests Survive Drought in the Sierra Nevada Mountains?

In 2017, California was experiencing its most severe drought in over a millennia. Low rainfall and record high temperatures resulted in increased tree mortality and complete forest diebacks across the West. Though land managers scrambled to respond, they lacked information needed to make informed decisions. Focusing on California’s central and southern Sierra Nevada Mountains, this project seeks t
link

Can Prescribed Fire Help Forests Survive Drought in the Sierra Nevada Mountains?

In 2017, California was experiencing its most severe drought in over a millennia. Low rainfall and record high temperatures resulted in increased tree mortality and complete forest diebacks across the West. Though land managers scrambled to respond, they lacked information needed to make informed decisions. Focusing on California’s central and southern Sierra Nevada Mountains, this project seeks t
Learn More

Prewildfire Assessments of Postwildfire Debris-Flow Hazards

Debris flows are high-density slurries of water, rock fragments, soil, and mud that can have enormous destructive power. Wildfire can drastically increase the probability of debris flows in landscapes that have otherwise been stable. In 2010, the USGS developed the Cannon model to estimate postwildfire debris-flow probabilities and volumes in burned areas. In 2013, with the help of U.S. Forest...
link

Prewildfire Assessments of Postwildfire Debris-Flow Hazards

Debris flows are high-density slurries of water, rock fragments, soil, and mud that can have enormous destructive power. Wildfire can drastically increase the probability of debris flows in landscapes that have otherwise been stable. In 2010, the USGS developed the Cannon model to estimate postwildfire debris-flow probabilities and volumes in burned areas. In 2013, with the help of U.S. Forest...
Learn More

Postwildfire Debris-Flow Hazards

Wildfire is a natural process in forest ecosystems, and occurs with varying frequencies and severities depending on landscape characteristics, climatic conditions, and the historical fire regime. Although attention often is focused on the potential damages from wildfire in the wildland-urban interface, wildfire also presents a threat to critical infrastructure including flood water conveyances and...
link

Postwildfire Debris-Flow Hazards

Wildfire is a natural process in forest ecosystems, and occurs with varying frequencies and severities depending on landscape characteristics, climatic conditions, and the historical fire regime. Although attention often is focused on the potential damages from wildfire in the wildland-urban interface, wildfire also presents a threat to critical infrastructure including flood water conveyances and...
Learn More