Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7244

Evaluation of debris-flow building damage forecasts

Reliable forecasts of building damage due to debris flows may provide situational awareness and guide land and emergency management decisions. Application of debris-flow runout models to generate such forecasts requires combining hazard intensity predictions with fragility functions that link hazard intensity with building damage. In this study, we evaluated the performance of building damage fore
Authors
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, Jason W. Kean

Cyclic injection leads to larger and more frequent induced earthquakes under volume-controlled conditions

As carbon storage technologies advance globally, methods to understand and mitigate induced earthquakes become increasingly important. Although the physical processes that relate increased subsurface pore pressure changes to induced earthquakes have long been known, reliable methods to forecast and control induced seismic sequences remain elusive. Suggested reservoir engineering scenarios for miti
Authors
Kayla A. Kroll, Elizabeth S. Cochran

Evaluation of 2-D shear-wave velocity models and VS30at six strong-motion recording stations in southern California using multichannel analysis of surface waves and refraction tomography

To better understand the potential for amplified ground shaking at sites that house critical infrastructure, the U.S. Geological Survey (USGS) evaluated shear-wave velocities (VS) at six strong-motion recording stations in Southern California Edison facilities in southern California. We calculated VS30 (time-averaged shear-wave velocity in the upper 30 meters [m]), which is a parameter used in gro
Authors
Joanne H. Chan, Rufus D. Catchings, Mark R. Goldman, Coyn J. Criley, Robert R. Sickler

The evolution of a young ocean within Mimas

The fractured, young surfaces on confirmed ocean worlds such as Europa and Enceladus suggest that ocean-bearing moons with relatively thin overlying ice shells should be easy to identify. Hence, the discovery that Mimas’ rotation state is best explained by an internal ocean seems challenging to reconcile with its heavily cratered surface. Previous studies have shown that an internal ocean is compa
Authors
A. R. Rhoden, M. E. Walker, M. L. Rudolph, Michael T. Bland, Michael Manga

Forecasting the long-term spatial distribution of earthquakes for the 2023 US National Seismic Hazard Model using gridded seismicity

Probabilistic seismic hazard analyses such as the U.S. National Seismic Hazard Model (NSHM) typically rely on declustering and spatially smoothing an earthquake catalog to estimate a long‐term time‐independent (background) seismicity rate to forecast future seismicity. In support of the U.S. Geological Survey’s (USGS) 2023 update to the NSHM, we update the methods used to develop this background o
Authors
Andrea L. Llenos, Andrew J. Michael, Allison Shumway, Justin Rubinstein, Kirstie Lafon Haynie, Morgan P. Moschetti, Jason M. Altekruse, Kevin R. Milner

Empirical ground-motion basin response in the California Great Valley, Reno, Nevada, and Portland, Oregon

We assess how well the Next-Generation Attenuation-West 2 (NGA-West2) ground-motion models (GMMs), which are used in the US Geological Survey’s (USGS) National Seismic Hazard Model (NSHM) for crustal faults in the western United States, predict the observed basin response in the Great Valley of California, the Reno basin in Nevada, and Portland and Tualatin basins in Oregon. These GMMs rely on sit
Authors
Sean Kamran Ahdi, Brad T. Aagaard, Morgan P. Moschetti, Grace Alexandra Parker, Oliver S. Boyd, William J. Stephenson

SKHASH: A python package for computing earthquake focal mechanisms

We introduce a Python package for computing focal mechanism solutions. This algorithm, which we refer to as SKHASH, is largely based on the HASH algorithm originally written in Fortran over 20 yr ago. HASH innovated the use of suites of solutions, spanning the expected errors in polarities and takeoff angles, to estimate focal mechanism uncertainty. SKHASH benefits from new features with flexible
Authors
Robert Skoumal, Jeanne L. Hardebeck, Peter M. Shearer

Apparent non-double-couple components as artifacts of moment tensor inversion

Compilations of earthquake moment tensors from global and regional catalogs find pervasive non-double-couple (NDC) components with a mean deviation from a double-couple (DC) source of around 20%. Their distributions vary only slightly with magnitude, faulting mechanism, or geologic environments. This consistency suggests that for most earthquakes, especially smaller ones whose rupture processes ar
Authors
Boris Rösler, Seth Stein, Adam T. Ringler, Jiří Vackár

Preliminary implications of viscoelastic ray theory for anelastic seismic tomography models

The recent developments in general viscoelastic ray theory provide a rigorous mathematical framework for anelastic seismic tomography. They provide closed‐form solutions of forward ray‐tracing and simple inverse problems for anelastic horizontal and spherical layered media with material gradients. They provide ray‐tracing computation algorithms valid for all angles of incidence that account for ch
Authors
Roger D. Borcherdt

Inbuilt age, residence time, and inherited age from radiocarbon dates of modern fires and late Holocene deposits, Western Transverse Ranges, California

Radiocarbon dates of sedimentary deposits include the elapsed time between formation of the organic material and deposition at the sample site, known as the inherited age. Long inherited ages reduce the accuracy of estimates of the timing of depositional events used to infer paleoclimate change, fire histories, and paleoearthquake timing. An inherited age distribution combines the inbuilt age dis
Authors
Katherine Scharer, Devin McPhillips, Jenifer Amy Leidelmeijer, Matthew Kirby

Post-wildfire debris flows

Post-wildfire debris flows pose severe hazards to communities and infrastructure near and within recently burned mountainous terrain. Intense heat of wildfires changes the runoff characteristics of a watershed by combusting the vegetative canopy, litter, and duff, introducing ash into the soil and creating water repellant soils. Following wildfire, rainfall on bare ground is less able to infiltrat
Authors
Joseph Gartner, Jason W. Kean, Francis K. Rengers, Scott W. McCoy, Nina S. Oakley, Gary J. Sheridan

A new database of giant impacts over a wide range of masses and with material strength: A first analysis of outcomes

In the late stage of terrestrial planet formation, planets are predicted to undergo pairwise collisions known as giant impacts. Here, we present a high-resolution database of giant impacts for differentiated colliding bodies of iron–silicate composition, with target masses ranging from 1 × 10−4M⊕ up to super-Earths (5 M⊕). We vary the impactor-to-target mass ratio, core–mantle (iron–silicate) frac
Authors
Alexandre Emsenhuber, Erik Asphaug, Saverio Cambioni, Travis S. J. Gabriel, Stephen R. Schwartz, Robert E. Melikyan, C. Adeene Denton
Was this page helpful?