Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7238

Empirical ground-motion basin response in the California Great Valley, Reno, Nevada, and Portland, Oregon

We assess how well the Next-Generation Attenuation-West 2 (NGA-West2) ground-motion models (GMMs), which are used in the US Geological Survey’s (USGS) National Seismic Hazard Model (NSHM) for crustal faults in the western United States, predict the observed basin response in the Great Valley of California, the Reno basin in Nevada, and Portland and Tualatin basins in Oregon. These GMMs rely on sit
Authors
Sean Kamran Ahdi, Brad T. Aagaard, Morgan P. Moschetti, Grace Alexandra Parker, Oliver S. Boyd, William J. Stephenson

Apparent non-double-couple components as artifacts of moment tensor inversion

Compilations of earthquake moment tensors from global and regional catalogs find pervasive non-double-couple (NDC) components with a mean deviation from a double-couple (DC) source of around 20%. Their distributions vary only slightly with magnitude, faulting mechanism, or geologic environments. This consistency suggests that for most earthquakes, especially smaller ones whose rupture processes ar
Authors
Boris Rösler, Seth Stein, Adam T. Ringler, Jiří Vackár

Preliminary implications of viscoelastic ray theory for anelastic seismic tomography models

The recent developments in general viscoelastic ray theory provide a rigorous mathematical framework for anelastic seismic tomography. They provide closed‐form solutions of forward ray‐tracing and simple inverse problems for anelastic horizontal and spherical layered media with material gradients. They provide ray‐tracing computation algorithms valid for all angles of incidence that account for ch
Authors
Roger D. Borcherdt

Inbuilt age, residence time, and inherited age from radiocarbon dates of modern fires and late Holocene deposits, Western Transverse Ranges, California

Radiocarbon dates of sedimentary deposits include the elapsed time between formation of the organic material and deposition at the sample site, known as the inherited age. Long inherited ages reduce the accuracy of estimates of the timing of depositional events used to infer paleoclimate change, fire histories, and paleoearthquake timing. An inherited age distribution combines the inbuilt age dis
Authors
Katherine Scharer, Devin McPhillips, Jenifer Amy Leidelmeijer, Matthew Kirby

Post-wildfire debris flows

Post-wildfire debris flows pose severe hazards to communities and infrastructure near and within recently burned mountainous terrain. Intense heat of wildfires changes the runoff characteristics of a watershed by combusting the vegetative canopy, litter, and duff, introducing ash into the soil and creating water repellant soils. Following wildfire, rainfall on bare ground is less able to infiltrat
Authors
Joseph Gartner, Jason W. Kean, Francis K. Rengers, Scott W. McCoy, Nina S. Oakley, Gary J. Sheridan

A new database of giant impacts over a wide range of masses and with material strength: A first analysis of outcomes

In the late stage of terrestrial planet formation, planets are predicted to undergo pairwise collisions known as giant impacts. Here, we present a high-resolution database of giant impacts for differentiated colliding bodies of iron–silicate composition, with target masses ranging from 1 × 10−4M⊕ up to super-Earths (5 M⊕). We vary the impactor-to-target mass ratio, core–mantle (iron–silicate) frac
Authors
Alexandre Emsenhuber, Erik Asphaug, Saverio Cambioni, Travis S. J. Gabriel, Stephen R. Schwartz, Robert E. Melikyan, C. Adeene Denton

Performance-based earthquake early warning for tall buildings

The ShakeAlert Earthquake Early Warning (EEW) system aims to issue an advance warning to residents on the West Coast of the United States seconds before the ground shaking arrives, if the expected ground shaking exceeds a certain threshold. However, residents in tall buildings may experience much greater motion due to the dynamic response of the buildings. Therefore, there is an ongoing effort to
Authors
S. Farid Ghahari, Khachik Sargsyan, Grace Alexandra Parker, Dan Swensen, Mehmet Çelebi, Hamid Haddadi, Ertugrul Taciroglu

Noise constraints on global body‐wave measurement thresholds

Intermediate sized earthquakes (≈M4–6.5) are often measured using the teleseismic body‐wave magnitude (⁠𝑚b⁠). 𝑚b measurements are especially critical at the lower end of this range when teleseismic waveform modeling techniques (i.e., moment tensor analysis) are difficult. The U.S. Geological Survey National Earthquake Information Center (NEIC) determines the location and magnitude of all M 5 and g
Authors
Adam T. Ringler, David C. Wilson, Paul S. Earle, William L. Yeck, David B. Mason, Justin T. Wilgus

Summary of Creepmeter Data from 1980 to 2020—Measurements Spanning the Hayward, Calaveras, and San Andreas Faults in Northern and Central California

This report is an update to the presentation by Schulz (1989) introducing potential users to the creepmeter data collected between the publication of Schulz’s report and mid-2020. The creepmeter network monitors aseismic, surface slip at various locations on the Hayward, Calaveras, and San Andreas Faults in northern and central California. There are different designs of creepmeters and these are b
Authors
John Langbein, Roger G. Bilham, Hollice A. Snyder, Todd Ericksen

Distinct yet adjacent earthquake sequences near the Mendocino Triple Junction: 20 December 2021 Mw 6.1 and 6.0 Petrolia, and 20 December 2022 Mw 6.4 Ferndale

Two earthquake sequences occurred a year apart at the Mendocino Triple Junction in northern California: first the 20 December 2021 �w 6.1 and 6.0 Petrolia sequence, then the 20 December 2022 �w 6.4 Ferndale sequence. To delineate active faults and understand the relationship between these sequences, we applied an automated deep‐learning workflow to create enhanced and relocated earthquake catalogs
Authors
Clara Yoon, David R. Shelly

Data-driven adjustments for combined use of NGA-East hard-rock ground motion and site amplification models

Model development in the Next Generation Attenuation-East (NGA-East) project included two components developed concurrently and independently: (1) earthquake ground-motion models (GMMs) that predict the median and aleatory variability of various intensity measures conditioned on magnitude and distance, derived for a reference hard-rock site condition with an average shear-wave velocity in the uppe
Authors
Maria E. Ramos-Sepulveda, Jonathan P. Stewart, Grace Alexandra Parker, Morgan P. Moschetti, Eric M. Thompson, Scott J. Brandenberg, Youssef M A Hashash, Ellen Rathje

How, when and where current mass flows in Martian gullies are driven by CO2 sublimation

Martian gullies resemble water-carved gullies on Earth, yet their present-day activity cannot be explained by water-driven processes. The sublimation of CO2 has been proposed as an alternative driver for sediment transport, but how this mechanism works remains unknown. Here we combine laboratory experiments of CO2-driven granular flows under Martian atmospheric pressure with 1D climate simulation
Authors
Lonneke Roelofs, Susan J. Conway, Tjalling de Haas, Colin M. Dundas, Stephen R. Lewis, Jim McElwaine, Kelly Pasquon, Jan Raack, Matt Sylvest, Manish Patel