Skip to main content
U.S. flag

An official website of the United States government

How We Use Water

Find water science information and activities related to the different ways we use water.

Filter Total Items: 101

Water Quality After Wildfire

Wildfires pose a substantial risk to water supplies because they can lead to severe flooding, erosion, and delivery of sediment, nutrients, and metals to rivers, lakes, and reservoirs. The USGS works with federal and state land managers and local water providers to monitor and assess water quality after wildfires in order to help protect our Nation’s water resources.
link

Water Quality After Wildfire

Wildfires pose a substantial risk to water supplies because they can lead to severe flooding, erosion, and delivery of sediment, nutrients, and metals to rivers, lakes, and reservoirs. The USGS works with federal and state land managers and local water providers to monitor and assess water quality after wildfires in order to help protect our Nation’s water resources.
Learn More

CASCaDE: Computational Assessments of Scenarios of Change for the Delta Ecosystem

The Delta of the Sacramento and San Joaquin rivers provides drinking water supplies to two-thirds of Californians, and is a fragile ecosystem home to threatened and endangered species. The CASCaDE project builds on several decades of USGS science to address the goals of achieving water supply reliability and restoring the ecosystems in the Bay-Delta system.
link

CASCaDE: Computational Assessments of Scenarios of Change for the Delta Ecosystem

The Delta of the Sacramento and San Joaquin rivers provides drinking water supplies to two-thirds of Californians, and is a fragile ecosystem home to threatened and endangered species. The CASCaDE project builds on several decades of USGS science to address the goals of achieving water supply reliability and restoring the ecosystems in the Bay-Delta system.
Learn More

Water-Use Data and Research (WUDR) program

The USGS Water-Use Data and Research (WUDR) program provides financial assistance through cooperative agreements with State water resource agencies to improve the availability, quality, compatibility, and delivery of water-use data that is collected or estimated by States.
link

Water-Use Data and Research (WUDR) program

The USGS Water-Use Data and Research (WUDR) program provides financial assistance through cooperative agreements with State water resource agencies to improve the availability, quality, compatibility, and delivery of water-use data that is collected or estimated by States.
Learn More

Karst Aquifers

Karst terrain is created from the dissolution of soluble rocks, principally limestone and dolomite. Karst areas are characterized by distinctive landforms (like springs, caves, sinkholes) and a unique hydrogeology that results in aquifers that are highly productive but extremely vulnerable to contamination.
link

Karst Aquifers

Karst terrain is created from the dissolution of soluble rocks, principally limestone and dolomite. Karst areas are characterized by distinctive landforms (like springs, caves, sinkholes) and a unique hydrogeology that results in aquifers that are highly productive but extremely vulnerable to contamination.
Learn More

Integrated Water Science (IWS) Basins

The U.S. Geological Survey is integrating its water science programs to better address the Nation’s greatest water resource challenges. At the heart of this effort are plans to intensively study at least 10 Integrated Water Science (IWS) basins — medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers — over the next decade. The IWS basins will represent a wide range of...
link

Integrated Water Science (IWS) Basins

The U.S. Geological Survey is integrating its water science programs to better address the Nation’s greatest water resource challenges. At the heart of this effort are plans to intensively study at least 10 Integrated Water Science (IWS) basins — medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers — over the next decade. The IWS basins will represent a wide range of...
Learn More

USGS Streamgaging Network

The USGS Groundwater and Streamflow Information Program supports the collection and (or) delivery of both streamflow and water-level information at approximately 8,500 sites and water-level information alone for more than 1,700 additional sites. The data are served online—most in near realtime—to meet many diverse needs.
link

USGS Streamgaging Network

The USGS Groundwater and Streamflow Information Program supports the collection and (or) delivery of both streamflow and water-level information at approximately 8,500 sites and water-level information alone for more than 1,700 additional sites. The data are served online—most in near realtime—to meet many diverse needs.
Learn More

Next Generation Water Observing System: Illinois River Basin

The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The Illinois River Basin provides an opportunity to implement the NGWOS in a system challenged by an...
link

Next Generation Water Observing System: Illinois River Basin

The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The Illinois River Basin provides an opportunity to implement the NGWOS in a system challenged by an...
Learn More

Next Generation Water Observing System: Upper Colorado River Basin

The Next Generation Water Observing System (NGWOS) provides high-fidelity, real-time data on water quantity, quality, and use to support modern prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The headwaters of the Colorado and Gunnison River Basins provide an opportunity to implement NGWOS in a...
link

Next Generation Water Observing System: Upper Colorado River Basin

The Next Generation Water Observing System (NGWOS) provides high-fidelity, real-time data on water quantity, quality, and use to support modern prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The headwaters of the Colorado and Gunnison River Basins provide an opportunity to implement NGWOS in a...
Learn More

Principal Aquifers of the United States

This website compiles USGS resources and data related to principal aquifers including Aquifer Basics, principal aquifers maps and GIS data, and the National Aquifer Code Reference List.
link

Principal Aquifers of the United States

This website compiles USGS resources and data related to principal aquifers including Aquifer Basics, principal aquifers maps and GIS data, and the National Aquifer Code Reference List.
Learn More

Powder River: Data for Cross-Channel Profiles at 22 Sites in Southeastern Montana, 1975 through 2019

Powder River rises in the Bighorn Mountains of Wyoming and flows northward through a semi-arid landscape in Wyoming and Montana to the Yellowstone River. The river drains an area of 34,700 square kilometers and has an average discharge of about 500 million cubic meters per year. Cross-channel profile data were collected at 22 sites on the river and its tributaries from 1975 through 2014.
link

Powder River: Data for Cross-Channel Profiles at 22 Sites in Southeastern Montana, 1975 through 2019

Powder River rises in the Bighorn Mountains of Wyoming and flows northward through a semi-arid landscape in Wyoming and Montana to the Yellowstone River. The river drains an area of 34,700 square kilometers and has an average discharge of about 500 million cubic meters per year. Cross-channel profile data were collected at 22 sites on the river and its tributaries from 1975 through 2014.
Learn More

Transboundary Assessments of Water Quality in the Pacific Northwest

In 2019, the USGS began studying the baseline water-quality of selected transboundary rivers in the Pacific Northwest. These studies are designed to characterize current water-quality conditions so as to facilitate future assessments of potential impacts related to upstream mining activities.
link

Transboundary Assessments of Water Quality in the Pacific Northwest

In 2019, the USGS began studying the baseline water-quality of selected transboundary rivers in the Pacific Northwest. These studies are designed to characterize current water-quality conditions so as to facilitate future assessments of potential impacts related to upstream mining activities.
Learn More

Atmospheric Warming, Loss of Snow Cover, and Declining Colorado River Flow

Declining snow cover is playing a key role in decreasing the flow of the Colorado River, “the lifeblood of the Southwest,” by enabling increased evaporation. As the warming continues, increasingly severe water shortages are expected.
link

Atmospheric Warming, Loss of Snow Cover, and Declining Colorado River Flow

Declining snow cover is playing a key role in decreasing the flow of the Colorado River, “the lifeblood of the Southwest,” by enabling increased evaporation. As the warming continues, increasingly severe water shortages are expected.
Learn More