Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7220

Working with dynamic earthquake rupture models: A practical guide

Dynamic rupture models are physics‐based simulations that couple fracture mechanics to wave propagation and are used to explain specific earthquake observations or to generate a suite of predictions to understand the influence of frictional, geometrical, stress, and material parameters. These simulations can model single earthquakes or multiple earthquake cycles. The objective of this article is t
Authors
Marlon D. Ramos, Prithvi Thakur, Yihe Huang, Ruth A. Harris, Kenny J. Ryan

The potential of using fiber optic distributed acoustic sensing (DAS) in earthquake early warning applications

As the seismological community embraces fiber optic distributed acoustic sensing (DAS), DAS arrays are becoming a logical, scalable option to obtain strain and ground‐motion data for which the installation of seismometers is not easy or cheap, such as in dense offshore arrays. The potential of strain data in earthquake early warning (EEW) applications has been recently demonstrated using records f
Authors
Noha Farghal, Jessie Kate Saunders, Grace Alexandra Parker

Planetary Aeolian landforms: An introduction to the Fifth Planetary Dunes Workshop Special Issue

Aeolian landforms are widespread in our solar system. Understanding the exact nature and processes of formation of these features are challenging tasks necessitating a strong collaboration between scientists with different skills and scientific backgrounds. This paper describes the special issue for the 5th International Planetary Dunes Workshop, which includes 15 research papers and three comment
Authors
Simone Silvestro, Timothy N. Titus

Considerations for creating equitable and inclusive communication campaigns associated with ShakeAlert, the earthquake early warning system for the West Coast of the USA

PurposeThe 2019 Global Assessment Report on Disaster Risk Reduction (GAR) cites earthquakes as the most damaging natural hazard globally, causing billions of dollars of damage and killing thousands of people. Earthquakes have the potential to drastically impact physical, social and economic landscapes; to reduce this risk, earthquake early warning (EEW) systems have been developed. However, these
Authors
Mariah Ramona Jenkins, Sara McBride, Meredith Morgoch, Hollie Smith

Insights into the geometry and evolution of the southern San Andreas Fault from geophysical data, southern California

Two new joint gravity-magnetic models in northern Coachella Valley provide additional evidence for a steep northeast dip of the Mission Creek strand of the southern San Andreas fault (southern California, USA). Gravity modeling indicates a steep northeast dip of the Banning fault in the upper 1–2 km in northern Coachella Valley. The Mission Creek strand and its continuation to the southeast (Coach
Authors
Victoria Langenheim, Gary S. Fuis

Preliminary geologic map of early Miocene felsic eruptive centers in the Aquarius Mountains, west-central Arizona

The first author, Gary S. Fuis, conducted this mapping in the summer of 1967 in partial fulfillment of the entry requirements into the Ph.D program of the Division of Geological and Planetary Sciences of the California Institute of Technology, Pasadena, Calif. The area mapped lies wholly within the Fort Rock Ranch, a private ranch spanning ~50 square miles in Mohave and Yavapai Counties, Arizona.
Authors
Gary S. Fuis, J. Luke Blair

A geomorphic-process-based cellular automata model of colluvial wedge morphology and stratigraphy

The development of colluvial wedges at the base of fault scarps following normal-faulting earthquakes serves as a sedimentary record of paleoearthquakes and is thus crucial in assessing seismic hazard. Although there is a large body of observations of colluvial wedge development, connecting this knowledge to the physics of sediment transport can open new frontiers in our understanding. To explore
Authors
Harrison J. Gray, Christopher DuRoss, Sylvia Nicovich, Ryan D. Gold

Using near–surface temperature data to vicariously calibrate high-resolution thermal infrared imagery and estimate physical surface properties

Thermal response of the surface to solar insolation is a function of the topography and the thermal physical characteristics of the landscape, which include bulk density, heat capacity, thermal conductivity and surface albedo and emissivity. Thermal imaging is routinely used to constrain thermal physical properties by characterizing or modeling changes in the diurnal temperature profiles. Images n
Authors
Timothy N. Titus, J. Judson Wynne, M.D. Jhabvala, N. A. Cabrol

Updates to and applications of the USGS National Crustal Model for seismic hazard studies

The U.S. Geological Survey (USGS) National Crustal Model (NCM) is being developed to assist in the modeling of seismic hazards across the conterminous United States. The NCM is composed of a grid of geophysical profiles, extending from the Earth’s surface into the upper mantle. It is constructed from a 3D geologic framework and geophysical rules defined by: (1) a petrologic and mineral physics dat
Authors
Oliver S. Boyd

In situ recording of Mars soundscape

Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency2,3, and (iii) high frequency waves are strongly attenuated with distance in CO22–4. How
Authors
Sylvestre Maurice, Baptiste Chide, Naomi Murdoch, Ralph D. Lorenz, David Mimoun, Roger C. Wiens, Alexander E. Stott, X. Jacob, T. Bertrand, F. Montmessin, Nina L. Lanza, C. Alvarez-Llamas, S. M. Angel, M. Aung, J. Balaram, O. Beyssac, A. Cousin, G. Delory, O. Forni, T. Fouchet, O. Gasnault, H. Grip, M. Hecht, J. Hoffman, J. Laserna, J. Lasue, J. N. Maki, J. McClean, P. -Y. Meslin, S. Le Mouélic, A. Munguira, C. E. Newman, J. A. Rodríguez Manfredi, J. Moros, A. Ollila, P. Pilleri, S. E. Schröder, M. de la Torre Juárez, T. Tzanetos, K. Stack, K. Farley, K. H. Williford, T. Acosta-Maeda, Ryan Anderson, D.M. Applin, G. Arana, M. Bassas-Portus, R. Beal, P. S. A. Beck, K. Benzerara, S. Bernard, P. Bernardi, T. Bosak, B. Bousquet, A. Brown, A. Cadu, P. Caïs, K. Castro, E. Clavé, S. M. Clegg, E. Cloutis, S. Connell, A. Debus, E. Dehouck, D. Delapp, C. Donny, A. Dorresoundiram, G. Dromart, B. Dubois, C. Fabre, A. Fau, W. F. Fischer, R. Francis, J. Frydenvang, Travis S. J. Gabriel, E. Gibbons, I. Gontijo, J. R. Johnson, H. Kalucha, E. Kelly, E. Knutsen, G. Lacombe, C. Legett, R. Leveille, E. Lewin, G. Lopez-Reyes, E. Lorigny, J. M. Madariaga, M. B. Madsen, S. Madsen, L. Mandon, N. Mangold, M. Mann, J.-A. Manrique, J. Martinez-Frias, L. E. Mayhew, F. Meunier, T. McConnochie, S. M. McLennan, G. Montagnac, V. Mousset, T. Aliste Nelson, R. T. Newell, Y. Parot, C. Pilorget, P. Pinet, G. Pont, C. Quantin-Nataf, B. Quertier, W. Rapin, A. Reyes-Newell, S. Robinson, L. Rochas, C. Royer, F. Rull, V. Sautter, S. Sharma, V. Shridar, A. Sournac, M. Toplis, I. Torre-Fdez, N. Turenne, A. Udry, M. Veneranda, D. Venhaus, D. Vogt, P. Willis

Toppling of a Trona Pinnacles Spire following the M5.5 RidgecrestaAftershock of June 2020

The 2019 Mw 7.1 Ridgecrest California earthquake rupture passed within 4 km of the Trona Pinnacles, a large group of tufa rock pillars. Reconnaissance following the Ridgecrest mainshock documented fresh damage to several of the Pinnacles. Repeated aerial photogrammetric surveys also documented damage during subsequent aftershocks. Here, we describe the photogrammetric data with emphasis on a speci
Authors
Andrea Donnellan, Joaquin Garcia-Suarez, Devin McPhillips, Domniki Asimaki, Christine Goulet, Xiaofeng Meng, Savannah Devine, Gregory Lyzanga

Synthesizing ground magnetic disturbance using dipole-aligned loop elementary currents and Biot-Savart relationship

This report presents a method for constructing a simplified numerical description of the electric current distributions in the ionosphere and gap region based on dipole-aligned loop elementary currents (DALECs). A theoretical basis for DALECs is presented, along with a prototypical algorithm for constructing an elementary numerical DALEC. The algorithm is verified and validated by combining DALECs
Authors
E. Joshua Rigler, Michael Wiltberger