Skip to main content
U.S. flag

An official website of the United States government

Coastal Erosion

Filter Total Items: 41

Aerial Imaging and Mapping

The Aerial Imaging and Mapping group (AIM), at the U.S. Geological Survey Woods (USGS) Hole Coastal and Marine Science Center provides UAS services to scientists to advance the science mission of the Coastal and Marine Geology Program. Scientists at the Woods Hole Coastal and Marine Science Center have been using UASs to acquire imagery of coastal and wetland environments, which is then used to...
link

Aerial Imaging and Mapping

The Aerial Imaging and Mapping group (AIM), at the U.S. Geological Survey Woods (USGS) Hole Coastal and Marine Science Center provides UAS services to scientists to advance the science mission of the Coastal and Marine Geology Program. Scientists at the Woods Hole Coastal and Marine Science Center have been using UASs to acquire imagery of coastal and wetland environments, which is then used to...
Learn More

Cross-Shore and Inlets (CSI) Processes

Exchange of flows, sediment, and biological particles between the inner shelf and back-barrier estuaries are significant for determination of extreme water levels, maintenance and formation of inlets, barrier-island evolution, and pollutant and larval transport. These connections are controlled by cross-shore processes including wave-driven inner-shelf and near-shore processes, dune overtopping...
link

Cross-Shore and Inlets (CSI) Processes

Exchange of flows, sediment, and biological particles between the inner shelf and back-barrier estuaries are significant for determination of extreme water levels, maintenance and formation of inlets, barrier-island evolution, and pollutant and larval transport. These connections are controlled by cross-shore processes including wave-driven inner-shelf and near-shore processes, dune overtopping...
Learn More

Coastal Model Applications and Field Measurements

Numerical models are used by scientists, engineers, coastal managers, and the public to understand and predict processes in the coastal ocean. This project supports the development and application of open-source coastal models and has several objectives: 1) improve the code of numerical sediment-transport models by implementing new or improved algorithms; 2) obtain measurements of coastal ocean...
link

Coastal Model Applications and Field Measurements

Numerical models are used by scientists, engineers, coastal managers, and the public to understand and predict processes in the coastal ocean. This project supports the development and application of open-source coastal models and has several objectives: 1) improve the code of numerical sediment-transport models by implementing new or improved algorithms; 2) obtain measurements of coastal ocean...
Learn More

Caribbean Tsunami and Earthquake Hazards Studies

Puerto Rico and the Virgin Islands are located at an active plate boundary between the North American plate and the northeast corner of the Caribbean plate. Plate movements have caused large magnitude earthquakes and devastating tsunamis. The USGS has an ongoing program to identify and map the faults in this region using various geophysical and geological methods in order to estimate the location...
link

Caribbean Tsunami and Earthquake Hazards Studies

Puerto Rico and the Virgin Islands are located at an active plate boundary between the North American plate and the northeast corner of the Caribbean plate. Plate movements have caused large magnitude earthquakes and devastating tsunamis. The USGS has an ongoing program to identify and map the faults in this region using various geophysical and geological methods in order to estimate the location...
Learn More

Coastal Change Processes

The primary objective of this project is to increase our understanding of the physical processes that cause coastal change, and ultimately improve our capability to predict the processes and their impacts. This will be approached by using geophysical surveys, oceanographic studies, and predictive models to investigate the interactions of shoreline, nearshore, and offshore sediment transport...
link

Coastal Change Processes

The primary objective of this project is to increase our understanding of the physical processes that cause coastal change, and ultimately improve our capability to predict the processes and their impacts. This will be approached by using geophysical surveys, oceanographic studies, and predictive models to investigate the interactions of shoreline, nearshore, and offshore sediment transport...
Learn More

Using Video Imagery to Study Coastal Change: Sand Key, Florida

Video observations of Sand Key, Florida, are used to monitor a range of coastal processes, for example changes in the shoreline position, both seasonally and due to long-term effects such as sea-level rise, and instances of beach and dune erosion during extreme storm events.
link

Using Video Imagery to Study Coastal Change: Sand Key, Florida

Video observations of Sand Key, Florida, are used to monitor a range of coastal processes, for example changes in the shoreline position, both seasonally and due to long-term effects such as sea-level rise, and instances of beach and dune erosion during extreme storm events.
Learn More

Hurricane Sandy Response - Barrier Island and Estuarine Wetland Physical Change Assessment

This project integrated a wetland assessment with existing coastal-change hazard assessments for the adjacent dunes and beaches of Assateague Island, Maryland, to create a more comprehensive coastal vulnerability assessment.
link

Hurricane Sandy Response - Barrier Island and Estuarine Wetland Physical Change Assessment

This project integrated a wetland assessment with existing coastal-change hazard assessments for the adjacent dunes and beaches of Assateague Island, Maryland, to create a more comprehensive coastal vulnerability assessment.
Learn More

Scenario-Based Assessments for Coastal Change Hazard Forecasts

A decade of USGS research on storm-driven coastal change hazards has provided the data and modeling capabilities needed to identify areas of our coastline that are likely to experience extreme and potentially hazardous erosion during an extreme storm.
link

Scenario-Based Assessments for Coastal Change Hazard Forecasts

A decade of USGS research on storm-driven coastal change hazards has provided the data and modeling capabilities needed to identify areas of our coastline that are likely to experience extreme and potentially hazardous erosion during an extreme storm.
Learn More

Storm-Induced Coastal Processes

Process studies examine the physical processes at work prior to, during, and following coastal storm events. Understanding the processes involved in coastal landform evolution will improve the accuracy of the assessments of storm-induced coastal change hazards.
link

Storm-Induced Coastal Processes

Process studies examine the physical processes at work prior to, during, and following coastal storm events. Understanding the processes involved in coastal landform evolution will improve the accuracy of the assessments of storm-induced coastal change hazards.
Learn More

Forecasting Coastal Change

This project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. The overall objective is to improve real-time and scenario-based predictions of coastal change to support management of coastal infrastructure, resources, and safety.
link

Forecasting Coastal Change

This project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. The overall objective is to improve real-time and scenario-based predictions of coastal change to support management of coastal infrastructure, resources, and safety.
Learn More
link

National Assessment of Coastal Change Hazards

Research to identify areas that are most vulnerable to coastal change hazards including beach and dune erosion, long-term shoreline change, and sea-level rise.
Learn More

Science Support for the Mississippi Coastal Improvement Project

Since 2007, the USGS (with NPS and USACE) has been mapping the seafloor and substrate around the Mississippi barrier islands to characterize the near-surface stratigraphy and identify the influence it has on island evolution and fate.
link

Science Support for the Mississippi Coastal Improvement Project

Since 2007, the USGS (with NPS and USACE) has been mapping the seafloor and substrate around the Mississippi barrier islands to characterize the near-surface stratigraphy and identify the influence it has on island evolution and fate.
Learn More
Was this page helpful?