Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2579

Low strength of deep San Andreas fault gouge from SAFOD core

The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located
Authors
David A. Lockner, Carolyn A. Morrow, Diane E. Moore, Stephen H. Hickman

An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation
Authors
Jennifer Palguta, Colin F. Williams, Steven E. Ingebritsen, Stephen H. Hickman, Eric Sonnenthal

Putting down roots in earthquake country: Your handbook for earthquakes in the Central United States

This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about
Authors
Richard Contributors: Dart, Jill McCarthy, Natasha McCallister, Robert A. Williams

Overview of the ARkStorm scenario

The U.S. Geological Survey, Multi Hazards Demonstration Project (MHDP) uses hazards science to improve resiliency of communities to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages emergency planners, businesses, universities, government agencies, and others in preparing for major natural disasters. The project also helps to

Authors
Keith Porter, Anne Wein, Charles N. Alpers, Allan Baez, Patrick L. Barnard, James Carter, Alessandra Corsi, James Costner, Dale Cox, Tapash Das, Mike Dettinger, James Done, Charles Eadie, Marcia Eymann, Justin Ferris, Prasad Gunturi, Mimi Hughes, Robert Jarrett, Laurie Johnson, Hanh Dam Le-Griffin, David Mitchell, Suzette Morman, Paul Neiman, Anna Olsen, Suzanne Perry, Geoffrey Plumlee, Martin Ralph, David Reynolds, Adam Rose, Kathleen Schaefer, Julie Serakos, William Siembieda, Jonathan D. Stock, David Strong, Ian Sue Wing, Alex Tang, Pete Thomas, Ken Topping, Chris Wills, Lucile Jones

Electrical properties of methane hydrate + sediment mixtures

As part of our DOE-funded proposal to characterize gas hydrate in the Gulf of Mexico using marine electromagnetic methods, a collaboration between SIO, LLNL, and USGS with the goal of measuring the electrical properties of lab-created methane (CH4) hydrate and sediment mixtures was formed. We examined samples with known characteristics to better relate electrical properties measured in the field t
Authors
Wyatt L. Du Frane, Laura A. Stern, Karen A. Weitemeyer, Steven Constable, Jeffery J. Roberts

Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This lat
Authors
William L. Ellsworth, Peter E. Malin

Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/−4.3 mm/yr (1σ) for the main trace of the San Andreas fault at Parkfield, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the C
Authors
N.A. Toke, J.R. Arrowsmith, Michael J. Rymer, A. Landgraf, D.E. Haddad, M. Busch, J. Coyan, A. Hannah

San Andreas fault earthquake chronology and Lake Cahuilla history at Coachella, California

The southernmost ~100 km of the San Andreas fault has not ruptured historically. It is imperative to determine its rupture history to better predict its future behavior. This paleoseismic investigation in Coachella, California, establishes a chronology of at least five and up to seven major earthquakes during the past ~1100 yr. This chronology yields a range of average recurrence intervals between
Authors
B. Philibosian, T. Fumal, R. Weldon

Estimating earthquake-rupture rates on a fault or fault system

Previous approaches used to determine the rates of different earthquakes on a fault have made assumptions regarding segmentation, have been difficult to document and reproduce, and have lacked the ability to satisfy all available data constraints. We present a relatively objective and reproducible inverse methodology for determining the rate of different ruptures on a fault or fault system. The da
Authors
E. H. Field, M.T. Page

Frictional strengths of talc-serpentine and talc-quartz mixtures

Talc is a constituent of faults in a variety of settings, and it may be an effective weakening agent depending on its abundance and distribution within a fault. We conducted frictional strength experiments under hydrothermal conditions to determine the effect of talc on the strengths of synthetic gouges of lizardite and antigorite serpentinites and of quartz. Small amounts of talc weaken serpentin
Authors
Diane E. Moore, D. A. Lockner

Developing empirical collapse fragility functions for global building types

Building collapse is the dominant cause of casualties during earthquakes. In order to better predict human fatalities, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program requires collapse fragility functions for global building types. The collapse fragility is expressed as the probability of collapse at discrete levels of the input hazard defined in t
Authors
K. Jaiswal, D. Wald, D. D'Ayala