Publications
Geomagnetism publications.
Filter Total Items: 415
Geomagnetism Program research plan, 2020–2024
The Geomagnetism Program of the U.S. Geological Survey (USGS) monitors geomagnetic field variation through operation of a network of observatories across the United States and its territories, and it pursues scientific research needed to estimate and assess geomagnetic and geoelectric hazards. Over the next five years (2020–2024 inclusive) and in support of national and agency priorities, Geomagne
Authors
Jeffrey J. Love, Anna Kelbert, Benjamin S. Murphy, E. Joshua Rigler, Kristen A. Lewis
Adjusted geomagnetic data—Theoretical basis and validation
Adjusted geomagnetic data are magnetometer measurements with provisional correction factors applied such that vector quantities are oriented in a local Cartesian frame in which the X axis points north, the Y axis points east, and the Z axis points down. These correction factors are determined from so-called absolute measurements, which are “ground truth” observations made in the field using specia
Authors
E. Joshua Rigler, Abram E. Claycomb
Recording the aurora borealis (northern lights) at seismometers across Alaska
We examine three continuously recording data sets related to the aurora: all‐sky camera images, three‐component magnetometer data, and vertical‐component, broadband seismic data as part of the EarthScope project (2014 to present). Across Alaska there are six all‐sky cameras, 13 magnetometers, and >200>200 seismometers. The all‐sky images and magnetometers have the same objective, which is to monit
Authors
C. Tape, Adam T. Ringler, D.L. Hampton
Magnetic field variations in Alaska: Recording space weather events on seismic stations in Alaska
Seismometers are highly sensitive instruments to not only ground motion but also many other nonseismic noise sources (e.g., temperature, pressure, and magnetic field variations). We show that the Alaska component of the Transportable Array is particularly susceptible to recording magnetic storms and other space weather events because the sensors used in this network are unshielded and magnetic flu
Authors
Adam T. Ringler, Robert E. Anthony, David C. Wilson, Abram E. Claycomb, John Spritzer
Intensity and impact of the New York Railroad superstorm of May 1921
Analysis is made of low‐latitude ground‐based magnetometer data recording the magnetic superstorm of May 1921. By inference, the storm was driven by a series of interplanetary coronal mass ejections, one of which produced a maximum pressure on the magnetopause of ~64.5 nPa, sufficient to compress the subsolar magnetopause radius to ~5.3 Earth radii. Over the course of the storm, low‐latitude geoma
Authors
Jeffrey J. Love, Hisashi Hayakawa, Edward W. Cliver
Data sharing in magnetotellurics
Here, we introduce the first openly available comprehensive database of magnetotelluric (MT) and related electromagnetic data that we developed and matured over the past decade, explain how to access the data, and describe the challenges that had to be overcome to make MT data sharing possible. The database is a helpful tool for MT scientists, and is widely used by the international scientific com
Authors
Anna Kelbert, Svetlana Erofeeva, Chad Trabant, Rich Karstens, Mickey C. Van Fossen
Extreme‐value geoelectric amplitude and polarization across the northeast United States
Maps are presented of extreme‐value geoelectric field amplitude and horizontal polarization for the Northeast United States. These maps are derived from geoelectric time series calculated for sites across the Northeast by frequency‐domain multiplication (time‐domain convolution) of 172 magnetotelluric impedance tensors, acquired during a survey, with decades‐long, 1‐min resolution time series of g
Authors
Jeffrey J. Love, Greg M. Lucas, Paul A. Bedrosian, Anna Kelbert
On the intensity of the magnetic superstorm of September 1909
Analysis is made of solar observations and ground‐based magnetometer data recording space weather before and during the magnetic superstorm of 25 September 1909. From these data, it is inferred that the storm was initiated by an interplanetary coronal‐mass ejection having a mean Sun‐to‐Earth velocity of ~1,679 km/s. The commencement pressure on the magnetopause was ~32.4 nPa, sufficient to compres
Authors
Jeffrey J. Love, Hisashi Hayakawa, Edward W. Cliver
Honolulu Magnetic Observatory
Tucked in a grove of thorny mesquite trees, on an ancient coral reef on the south side of the Hawaiian island of Oahu, west of Pearl Harbor, a small unmanned observatory quietly records the Earth’s time-varying magnetic field. The Honolulu Magnetic Observatory is 1 of 14 that the U.S. Geological Survey Geomagnetism Program operates at various locations across the United States and its territories
Authors
Jeffrey J. Love, Carol Finn
The extreme space weather event in September 1909
We evaluate worldwide low-latitude auroral activity associated with the great magnetic storm of September 1909 for which a minimum Dst value of −595 nT has recently been determined. From auroral observations, we calculate that the equatorward boundary of the auroral oval in the 1909 event was in the range from 31°–35° invariant latitude (assuming auroral height of 400 km) to 37°–38° (800 km). Thes
Authors
Hisashi Hayakawa, Yusuke Ebihara, Edward W. Cliver, Kentaro Hattori, Shin Toriumi, Jeffrey J. Love, Norio Umemura, Kosuke Namekata, Takahito Sakaue, Takuya Takahashi, Kazunari Shibata
Geoelectric hazard maps for the Pacific Northwest
Maps of extreme value, horizontal component geoelectric field amplitude are constructed for the Pacific Northwest United States (and parts of neighboring Canada). Multidecade long geoelectric field time series are calculated by convolving Earth surface impedance tensors from 71 discrete magnetotelluric survey sites across the region with historical 1‐min (2‐min Nyquist) geomagnetic variation time
Authors
Jeffrey J. Love, Greg M. Lucas, Anna Kelbert, Paul A. Bedrosian
On the feasibility of real-time mapping of the geoelectric field across North America
A review is given of the present feasibility for accurately mapping geoelectric fields across North America in near-realtime by modeling geomagnetic monitoring and magnetotelluric survey data. Should this capability be successfully developed, it could inform utility companies of magnetic-storm interference on electric-power-grid systems. That real-time mapping of geoelectric fields is a challenge
Authors
Jeffrey J. Love, E. Joshua Rigler, Anna Kelbert, Carol A. Finn, Paul A. Bedrosian, Christopher C. Balch