Explore our active and completed projects to learn more about the scientific investigations we conduct. Use keywords and the available filters to narrow your search scope.
Explore Our Projects
Explore Our Projects
Filter Total Items: 119
Critical Mineral Resources in Heavy Mineral Sands of the U.S. Atlantic Coastal Plain
In many parts of the southeastern U.S., dark-colored sands can be seen at beaches or beneath soil. These sands contain titanium, zirconium, and rare earth elements, which are considered critical mineral resources. Such sands are present in areas from the coast to a hundred miles or more inland beneath soil within the Atlantic Coastal Plain Province. In some locales they are concentrated enough to...
Systems Approach to Critical Minerals Inventory, Research, and Assessment
This project supports the Earth Mapping Resources Initiative (EarthMRI) by developing a mineral systems approach for defining focus areas. This project is investigating domestic sources of critical minerals in three sequential stages: inventory, research, and assessment. 1) Inventory the abundance of critical minerals in ore, minerals, and processed materials from major deposits in each system...
Remote Sensing Techniques for Characterizing Energy Resources in Waste
Funded by the USGS Energy Resource Program “Shark Tank” grant. The goal of this project is to develop a method to use remotely collected satellite and airborne data to ascertain the quantity and quality of waste at abandoned uranium mines to better estimate the resource potential, identify abandoned mines and explore potential applications to other energy resources. This is a collaborative effort...
Trace Metal Mobility in the Yellow Pine Mining District, Idaho
The study objective is to conduct an integrated, interdisciplinary study on source areas, biogeochemical transformations, and physical and biological pathways for trace metal transport in a tributary of the Snake River watershed, focusing on the Sugar Creek watershed. The historical Cinnabar mercury mine site is at the headwaters of Cinnabar Creek, a tributary to Sugar Creek. This integrated...
Iron Oxide-Copper-Cobalt-Gold-Rare Earth Element Deposits of Southeast Missouri—From the Ore Deposit Scale to a Global Deposit Model
The project main objectives are to: 1) geologically, characterize the setting and origin of the iron-copper-cobalt-gold-rare earth element deposits, and advance the knowledge of rare earth element and Co potential within iron oxide-copper-gold (IOCG) deposits of southeast Missouri, and 2) geophysically delineate and characterize the subsurface Precambrian geology using existing ground and new...
Synthesis of the Tectonic, Magmatic, and Metallogenic Evolution of the Midcontinent Rift System
The overall project objective is to develop a comprehensive synthesis of the tectonic, magmatic, and metallogenic evolution of the Midcontinent Rift System (MRS) through time by integrating geophysical, magmatic, and geochemical data and to create 3-D models of the rift over its evolution.
Rare Earth Element Accumulation Processes Resulting in High-Value Metal Enrichments in Regolith
The Southeastern United States contains numerous granites of the type that contain high concentrations of rare earth elements. We are conducting studies of these granites to advance rare earth element (REE) resource identification and assessment by resulting in an improved understanding of the fundamental source rock types, modes and occurrences, and geochemical parameters necessary for the mass...
Radiogenic and Stable Isotope Methods
Our work focuses on collaborating with high-priority U.S. Geological Survey projects and other Federal and international agencies, and on providing radiogenic and stable isotope analyses to support mineral- and environmentally-related geologic investigations.
Processes Controlling Groundwater Quality in Uranium In-Situ Recovery (ISR) Mining
The project's primary objective is to evaluate the reducing capacity of an aquifer down-gradient of a roll-front ore zone to assess the mobility of uranium and other associated elements (e.g. arsenic, selenium, molybdenum, and sulfur). Assessing the reducing capacity of the aquifer requires characterization of the mineralogy, geochemistry, and microbiology and their variation across the aquifer.
Mineville, Eastern Adirondacks – Geophysical and Geologic Studies
The USGS is using a set of advanced imaging and analysis tools to study the rocks within the eastern Adirondacks of upstate New York. The goal of these studies is to gain a better understanding of the geology and mineral resources in the area.
Magmas to Metals: Melt Inclusion Insights into the Formation of Critical Element-Bearing Ore Deposits
This project applies innovative melt inclusion and mineralogical techniques to characterize several distinctive magma types occurring together with prodigious, critical rare earth elements (REE) and gold-(antimony-tellurium) ore deposits within the U.S. We will characterize the pre-eruptive/pre-emplacement magmatic conditions in several districts. The goal is to determine the role of magmatism in...
Geoenvironmental Model Refinement and Advancement
The overall objective of our project is to take the abundant geoenvironmental model research that the Mineral Resources Program has supported, and use it to refine the geoenvironmental model concept to make it more useable for our current stakeholders.
Geochemical Signatures of Covered Mineral Deposits in the Northern Midcontinent
We are evaluating the potential of geochemical prospecting techniques that have shown promise in other covered terranes for mineral exploration in the northern midcontinent of the U.S. Novel components will be added to these methods with the objective of method advancement and improving our understanding of processes controlling the transmission of unique geochemical signatures from buried mineral...
Emerging Geoenvironmental Issues Related to Proposed Mining in the Lake Superior Region
We are studying environmental issues related to mining, and potential mining, in the Great Lakes region, continuing the study of characterizing baseline geochemistry of several watersheds in Minnesota and Michigan, examining the potential for aquatic toxicity from metals, and examining the acid-neutralizing and acid-generating potentials of mine waste, and the environmental, and possible human...
Beryllium: Economic Geology, Material Flow, and Global Importance of a Key Critical Mineral
Beryllium (Be) is a critical metal mineral commodity with unique chemical properties, making it indispensable to the computer, telecommunication, aerospace, medical, defense, and nuclear industries. We are studying known deposits of beryllium to determine where undiscovered beryllium resources might be found, analyzing how and where beryllium becomes concentrated in Earth’s crust, gathering a...
Sources, Forms, Extractability of Metals in Non-Ore Deposit Sources
This project explored potential recovery and environmental consequences of metals in mining and mineral processing wastes as a function of ore deposit geology, and in debris from demolished or burned buildings.
Macro and Micro Analytical Methods Development
The Macro and Micro Analytical Methods Development Project (MMAMD) provides access to the expertise of highly experienced research scientists and state of the art analytical instrumentation to develop new and unique analytical capabilities to solve complex problems beyond routine analysis.
Life Cycles of Byproduct Critical Minerals
Project objectives are to 1) assess the overall life cycle of selected byproduct critical elements tellurium (Te), indium (In), gallium (Ga), and germanium (Ge), 2) perform an assessment of critical element resources and examine the processes and conditions controlling the concentration of byproduct critical elements by deposit type, and 3) improve understanding of the surficial geochemistry of...
Tellurium in Igneous-related Epithermal Precious Metal Deposits in Colorado and New Mexico
The project aims to improve our understanding of the causes of tellurium enrichment in epithermal precious metal deposits, and strengthen our ability to assess the Nation's tellurium deposits. Tellurium is used in solar panel technologies and is considered a critical mineral. Epithermal deposits of this type represent a prospective future source of tellurium.
Databases and Information Analysis
Our objectives are to: 1) collect and assimilate digital geospatial data in a standardized format for minerals-related research and assessments, 2) develop and improve analytical procedures for using geospatial data in minerals products, 3) provide support for timely, quality, and reproducible mineral assessments, 4) provide easy access to the data, and 5) report results of our work in a digital...
Data Information Management and Technology - Eastern Minerals
The Data Information Management and Technology project provides geographic information systems (GIS) management and technical support to projects of the Geology, Energy & Minerals (GEM) Science Center. The project facilitates geospatial data development, compiling, documentation, visualization, analyses, modeling, and product requirements using the GIS framework. The project provides technical...
Explore our active and completed projects to learn more about the scientific investigations we conduct. Use keywords and the available filters to narrow your search scope.
Explore Our Projects
Explore Our Projects
Filter Total Items: 119
Critical Mineral Resources in Heavy Mineral Sands of the U.S. Atlantic Coastal Plain
In many parts of the southeastern U.S., dark-colored sands can be seen at beaches or beneath soil. These sands contain titanium, zirconium, and rare earth elements, which are considered critical mineral resources. Such sands are present in areas from the coast to a hundred miles or more inland beneath soil within the Atlantic Coastal Plain Province. In some locales they are concentrated enough to...
Systems Approach to Critical Minerals Inventory, Research, and Assessment
This project supports the Earth Mapping Resources Initiative (EarthMRI) by developing a mineral systems approach for defining focus areas. This project is investigating domestic sources of critical minerals in three sequential stages: inventory, research, and assessment. 1) Inventory the abundance of critical minerals in ore, minerals, and processed materials from major deposits in each system...
Remote Sensing Techniques for Characterizing Energy Resources in Waste
Funded by the USGS Energy Resource Program “Shark Tank” grant. The goal of this project is to develop a method to use remotely collected satellite and airborne data to ascertain the quantity and quality of waste at abandoned uranium mines to better estimate the resource potential, identify abandoned mines and explore potential applications to other energy resources. This is a collaborative effort...
Trace Metal Mobility in the Yellow Pine Mining District, Idaho
The study objective is to conduct an integrated, interdisciplinary study on source areas, biogeochemical transformations, and physical and biological pathways for trace metal transport in a tributary of the Snake River watershed, focusing on the Sugar Creek watershed. The historical Cinnabar mercury mine site is at the headwaters of Cinnabar Creek, a tributary to Sugar Creek. This integrated...
Iron Oxide-Copper-Cobalt-Gold-Rare Earth Element Deposits of Southeast Missouri—From the Ore Deposit Scale to a Global Deposit Model
The project main objectives are to: 1) geologically, characterize the setting and origin of the iron-copper-cobalt-gold-rare earth element deposits, and advance the knowledge of rare earth element and Co potential within iron oxide-copper-gold (IOCG) deposits of southeast Missouri, and 2) geophysically delineate and characterize the subsurface Precambrian geology using existing ground and new...
Synthesis of the Tectonic, Magmatic, and Metallogenic Evolution of the Midcontinent Rift System
The overall project objective is to develop a comprehensive synthesis of the tectonic, magmatic, and metallogenic evolution of the Midcontinent Rift System (MRS) through time by integrating geophysical, magmatic, and geochemical data and to create 3-D models of the rift over its evolution.
Rare Earth Element Accumulation Processes Resulting in High-Value Metal Enrichments in Regolith
The Southeastern United States contains numerous granites of the type that contain high concentrations of rare earth elements. We are conducting studies of these granites to advance rare earth element (REE) resource identification and assessment by resulting in an improved understanding of the fundamental source rock types, modes and occurrences, and geochemical parameters necessary for the mass...
Radiogenic and Stable Isotope Methods
Our work focuses on collaborating with high-priority U.S. Geological Survey projects and other Federal and international agencies, and on providing radiogenic and stable isotope analyses to support mineral- and environmentally-related geologic investigations.
Processes Controlling Groundwater Quality in Uranium In-Situ Recovery (ISR) Mining
The project's primary objective is to evaluate the reducing capacity of an aquifer down-gradient of a roll-front ore zone to assess the mobility of uranium and other associated elements (e.g. arsenic, selenium, molybdenum, and sulfur). Assessing the reducing capacity of the aquifer requires characterization of the mineralogy, geochemistry, and microbiology and their variation across the aquifer.
Mineville, Eastern Adirondacks – Geophysical and Geologic Studies
The USGS is using a set of advanced imaging and analysis tools to study the rocks within the eastern Adirondacks of upstate New York. The goal of these studies is to gain a better understanding of the geology and mineral resources in the area.
Magmas to Metals: Melt Inclusion Insights into the Formation of Critical Element-Bearing Ore Deposits
This project applies innovative melt inclusion and mineralogical techniques to characterize several distinctive magma types occurring together with prodigious, critical rare earth elements (REE) and gold-(antimony-tellurium) ore deposits within the U.S. We will characterize the pre-eruptive/pre-emplacement magmatic conditions in several districts. The goal is to determine the role of magmatism in...
Geoenvironmental Model Refinement and Advancement
The overall objective of our project is to take the abundant geoenvironmental model research that the Mineral Resources Program has supported, and use it to refine the geoenvironmental model concept to make it more useable for our current stakeholders.
Geochemical Signatures of Covered Mineral Deposits in the Northern Midcontinent
We are evaluating the potential of geochemical prospecting techniques that have shown promise in other covered terranes for mineral exploration in the northern midcontinent of the U.S. Novel components will be added to these methods with the objective of method advancement and improving our understanding of processes controlling the transmission of unique geochemical signatures from buried mineral...
Emerging Geoenvironmental Issues Related to Proposed Mining in the Lake Superior Region
We are studying environmental issues related to mining, and potential mining, in the Great Lakes region, continuing the study of characterizing baseline geochemistry of several watersheds in Minnesota and Michigan, examining the potential for aquatic toxicity from metals, and examining the acid-neutralizing and acid-generating potentials of mine waste, and the environmental, and possible human...
Beryllium: Economic Geology, Material Flow, and Global Importance of a Key Critical Mineral
Beryllium (Be) is a critical metal mineral commodity with unique chemical properties, making it indispensable to the computer, telecommunication, aerospace, medical, defense, and nuclear industries. We are studying known deposits of beryllium to determine where undiscovered beryllium resources might be found, analyzing how and where beryllium becomes concentrated in Earth’s crust, gathering a...
Sources, Forms, Extractability of Metals in Non-Ore Deposit Sources
This project explored potential recovery and environmental consequences of metals in mining and mineral processing wastes as a function of ore deposit geology, and in debris from demolished or burned buildings.
Macro and Micro Analytical Methods Development
The Macro and Micro Analytical Methods Development Project (MMAMD) provides access to the expertise of highly experienced research scientists and state of the art analytical instrumentation to develop new and unique analytical capabilities to solve complex problems beyond routine analysis.
Life Cycles of Byproduct Critical Minerals
Project objectives are to 1) assess the overall life cycle of selected byproduct critical elements tellurium (Te), indium (In), gallium (Ga), and germanium (Ge), 2) perform an assessment of critical element resources and examine the processes and conditions controlling the concentration of byproduct critical elements by deposit type, and 3) improve understanding of the surficial geochemistry of...
Tellurium in Igneous-related Epithermal Precious Metal Deposits in Colorado and New Mexico
The project aims to improve our understanding of the causes of tellurium enrichment in epithermal precious metal deposits, and strengthen our ability to assess the Nation's tellurium deposits. Tellurium is used in solar panel technologies and is considered a critical mineral. Epithermal deposits of this type represent a prospective future source of tellurium.
Databases and Information Analysis
Our objectives are to: 1) collect and assimilate digital geospatial data in a standardized format for minerals-related research and assessments, 2) develop and improve analytical procedures for using geospatial data in minerals products, 3) provide support for timely, quality, and reproducible mineral assessments, 4) provide easy access to the data, and 5) report results of our work in a digital...
Data Information Management and Technology - Eastern Minerals
The Data Information Management and Technology project provides geographic information systems (GIS) management and technical support to projects of the Geology, Energy & Minerals (GEM) Science Center. The project facilitates geospatial data development, compiling, documentation, visualization, analyses, modeling, and product requirements using the GIS framework. The project provides technical...