Critical loads of atmospheric deposition to Adirondack lake watersheds: A guide for policymakers
Acid deposition is sometimes referred to as “acid rain,” although part of the acid load reaches the surface by means other than rainfall. In the eastern U.S., acid deposition consists of several forms of sulfur and nitrogen that largely originate as emissions to the atmosphere from sources such as electricity-generating facilities (coal, oil, and natural gas), diesel- and gasoline-burning vehicles, some agricultural activities, and smokestack industries. Acid deposition is known to cause deleterious effects to sensitive ecosystems of which the Adirondack region of New York State provides several well-known and well-studied examples. This largely forested region includes abundant lakes, streams, and wetlands and possesses several landscape features that result in high ecosystem sensitivity to acid deposition. These features include bedrock that weathers slowly, steep slopes, and thin, naturally acidic soils. An ecosystem is described as sensitive to, or affected by, acid deposition if prolonged exposure to acid deposition has resulted in detrimental ecosystem effects. Soils, streams, and lakes that are less sensitive are better able to buffer acid deposition. A principal reason that acidification is a concern for resource managers is because of the changes induced in native biota and their habitat on land and in water. As the chemistry of soils and surface waters in sensitive landscapes changes in response to prolonged exposure to acid deposition, organisms that cannot tolerate high acidity, such as sugar maple trees and many species of fish and aquatic insects, may be gradually eliminated from the ecosystem. Other biota such as red spruce may experience increased stress and reduced growth rates as a result of acidification, exposing these species to increased susceptibility to disease and other natural stressors and perhaps increased mortality. The ecological effects of acid deposition have been documented by extensive research that began in the U.S. in the 1970s and continues today. This report does not provide a detailed discussion of these ecological effects, but interested readers can refer to four publications that provide good summaries of current scientific knowledge of these effects, including extensive reference to previous research in the Adirondacks (Driscoll et al. 2001, Jenkins et al. 2007, Burns et al. 2011, Sullivan 2015).
Citation Information
Publication Year | 2015 |
---|---|
Title | Critical loads of atmospheric deposition to Adirondack lake watersheds: A guide for policymakers |
Authors | Douglas A. Burns, Timothy J. Sullivan |
Publication Type | Report |
Publication Subtype | State or Local Government Series |
Index ID | 70161871 |
Record Source | USGS Publications Warehouse |
USGS Organization | New York Water Science Center |