Geohydrologic Investigations and Landscape Characteristics of Areas Contributing Water to Springs, the Current River, and Jacks Fork, Ozark National Scenic Riverways, Missouri
The Ozark National Scenic Riverways (ONSR) is a narrow corridor that stretches for approximately 134 miles along the Current River and Jacks Fork in southern Missouri. Most of the water flowing in the Current River and Jacks Fork is discharged to the rivers from springs within the ONSR, and most of the recharge area of these springs is outside the ONSR. This report describes geohydrologic investigations and landscape characteristics of areas contributing water to springs and the Current River and Jacks Fork in the ONSR.
The potentiometric-surface map of the study area for 2000-07 shows that the groundwater divide extends beyond the surface-water divide in some places, notably along Logan Creek and the northeastern part of the study area, indicating interbasin transfer of groundwater between surface-water basins. A low hydraulic gradient occurs in much of the upland area west of the Current River associated with areas of high sinkhole density, which indicates the presence of a network of subsurface karst conduits. The results of a low base-flow seepage run indicate that most of the discharge in the Current River and Jacks Fork was from identified springs, and a smaller amount was from tributaries whose discharge probably originated as spring discharge, or from springs or diffuse groundwater discharge in the streambed.
Results of a temperature profile conducted on an 85-mile reach of the Current River indicate that the lowest average temperatures were within or downstream from inflows of springs. A mass-balance on heat calculation of the discharge of Bass Rock Spring, a previously undescribed spring, resulted in an estimated discharge of 34.1 cubic feet per second (ft3/s), making it the sixth largest spring in the Current River Basin.
The 13 springs in the study area for which recharge areas have been estimated accounted for 82 percent (867 ft3/s of 1,060 ft3/s) of the discharge of the Current River at Big Spring during the 2006 seepage run. Including discharge from other springs, the cumulative discharge from springs was over 90 percent of the river discharge at most of the spring locations, and was 92 percent at Big Spring and at the lower end of the ONSR. The discharge from the 1.9-mile long Pulltite Springs Complex measured in the 2006 seepage run was 88 ft3/s. Most of this (77 ft3/s) was from the first approximately 0.25 mi of the Pulltite Springs Complex. It has been estimated that the annual mean discharge from the Current River Springs Complex is 125 ft3/s, based on an apparent discharge of 50 ft3/s during a 1966 U.S. Geological Survey seepage run. However, a reinterpretation of the 1966 seepage run data shows that the discharge from the Current River Springs Complex instead was about 12.6 ft3/s, and the annual mean discharge was estimated to be 32 ft3/s, substantially less than 125 ft3/s. The 2006 seepage run showed a gain of only 12 ft3/s from the combined Round Spring and Current River Springs Complex from the mouth of Sinking Creek to 0.7 mi upstream from Root Hollow. The 2006 temperature profile measurements did not indicate any influx of spring discharge throughout the length of the Current River Springs Complex.
The spring recharge areas with the largest number of identified sinkholes are Big Spring, Alley Spring, and Welch Spring. The spring recharge areas with the largest number of sinkholes per square mile of recharge area are Alley Spring, Blue Spring (Jacks Fork), Welch Spring, and Round Spring and the Current River Springs Complex. Using the currently known locations of losing streams, the Big Spring recharge area has the largest number of miles of losing stream, and the Bass Rock Spring recharge area has the largest number of miles of losing stream per unit recharge area. The spring recharge areas with the most open land and the least forested land per unit recharge area are Blue Spring (Jacks Fork), Welch Spring, Montauk Springs, and Alley Spring. The spring recharge areas with the least amount
Citation Information
Publication Year | 2009 |
---|---|
Title | Geohydrologic Investigations and Landscape Characteristics of Areas Contributing Water to Springs, the Current River, and Jacks Fork, Ozark National Scenic Riverways, Missouri |
DOI | 10.3133/sir20095138 |
Authors | Douglas N. Mugel, Joseph M. Richards, John G. Schumacher |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2009-5138 |
Index ID | sir20095138 |
Record Source | USGS Publications Warehouse |
USGS Organization | Missouri Water Science Center |