Skip to main content
U.S. flag

An official website of the United States government

Using cyanobacteria and other phytoplankton to assess trophic conditions: A qPCR-based, multi-year study in twelve large rivers across the United States

January 30, 2023

Phytoplankton is the essential primary producer in fresh surface water ecosystems. However, excessive phytoplankton growth due to eutrophication significantly threatens ecologic, economic, and public health. Therefore, phytoplankton identification and quantification are essential to understanding the productivity and health of freshwater ecosystems as well as the impacts of phytoplankton overgrowth (such as Cyanobacterial blooms) on public health. Microscopy is the gold standard for phytoplankton assessment but is time-consuming, has low throughput, and requires rich experience in phytoplankton morphology. Quantitative polymerase chain reaction (qPCR) is accurate and straightforward with high throughput. In addition, qPCR does not require expertise in phytoplankton morphology. Therefore, qPCR can be a useful alternative for molecular identification and enumeration of phytoplankton. Nonetheless, a comprehensive study is missing which evaluates and compares the feasibility of using qPCR and microscopy to assess phytoplankton in fresh water. This study 1) compared the performance of qPCR and microscopy in identifying and quantifying phytoplankton and 2) evaluated qPCR as a molecular tool to assess phytoplankton and indicate eutrophication. We assessed phytoplankton using both qPCR and microscopy in twelve large freshwater rivers across the United States from early summer to late fall in 2017, 2018, and 2019. qPCR- and microscope-based phytoplankton abundance had a significant positive linear correlation (adjusted R2 = 0.836, p-value < 0.001). Phytoplankton abundance had limited temporal variation within each sampling season and over the three years studied. The sampling sites in the midcontinent rivers had higher phytoplankton abundance than those in the eastern and western rivers. For instance, the concentration (geometric mean) of Bacillariophyta, Cyanobacteria, Chlorophyta, and Dinoflagellates at the sampling sites in the midcontinent rivers was approximately three times that at the sampling sites in the western rivers and approximately 18 times that at the sampling sites in the eastern rivers. Welch's analysis of variance indicates that phytoplankton abundance at the sampling sites in the midcontinent rivers was significantly higher than that at the sampling sites in the eastern rivers (p-value = 0.013) but was comparable to that at the sampling sites in the western rivers (p-value = 0.095). The higher phytoplankton abundance at the sampling sites in the midcontinent rivers was presumably because these rivers were more eutrophic. Indeed, low phytoplankton abundance occurred in oligotrophic or low trophic sites, whereas eutrophic sites had greater phytoplankton abundance. This study demonstrates that qPCR-based phytoplankton abundance can be a useful numerical indicator of the trophic conditions and water quality in freshwater rivers.

Publication Year 2023
Title Using cyanobacteria and other phytoplankton to assess trophic conditions: A qPCR-based, multi-year study in twelve large rivers across the United States
DOI 10.1016/j.watres.2023.119679
Authors Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu
Publication Type Article
Publication Subtype Journal Article
Series Title Water Research
Index ID 70247111
Record Source USGS Publications Warehouse
USGS Organization New York Water Science Center; Ohio-Kentucky-Indiana Water Science Center