Danny Brothers
I currently lead a project called "U.S. West Coast and Alaska Marine Geohazards" and I spend about 6-10 weeks per year at sea collecting marine geophysical data.
I received my Ph.D. from the Scripps Institution of Oceanography, then moved to Woods Hole, MA, for a Mendenhall Postdoctoral Fellowship. In 2013, I moved to Santa Cruz, CA, where I currently work as a Research Geophysicist at the USGS Pacific Coastal and Marine Science Center. I grew up in Colorado and spent four years at CU Boulder for undergraduate studies in geophysics.
My research is focused on the following topics:
-
Development and application of geophysical approaches to offshore earthquake, landslide and tsunami hazard assessments
-
Marine paleoseismology
-
Understanding the interplay between tectonic, sedimentary, climatic processes along continental margins
-
Combining basic and applied research to study the geomorphic development of continental margins, including substrate fluid flow
News and Outreach
For more recent USGS News stories, click my News tab
February 1, 2016, Anchorage Daily News, "New technology lets scientists pinpoint underwater landslide that triggered deadly 1964 tsunami"
February 2, 2016, FOX NEWS, "USGS discovers source of Alaska tsunami that decimated village in 1964"
January, 2016, USGS Soundwaves, "Investigating the Offshore Queen Charlotte-Fairweather Fault System in Southeastern Alaska, and its Potential to Produce Earthquakes, Tsunamis, and Submarine Landslides"
January, 2016, USGS Soundwaves, "Artificial-Gas-Seep Test Produces 3D Images of Bubble Plumes in the Ocean"
August 24, 2014 NY Times, "Methane is discovered seeping from seafloor off East Coast, scientists say"
October, 2011, USGS Soundwaves, "High-Resolution Multibeam Mapping of Mid-Atlantic Canyons to Assess Tsunami Hazards"
July 6, 2011 LA Times, “Scientists tie Colorado River flooding to San Andreas Quakes”
July 3, 2011 San Francisco Chronicle, “Big quake near Salton Sea may be long overdue”
June 29, 2011 Discovery News, “Smaller Salton Sea silences seismic shocks”
June 29, 2011 USA Today, “Salton Sea floods flipped San Andreas earthquake trigger”
January 9, 2010 Nature News, “Floods linked to San Andreas quakes”
July 28, 2009 LA Times feature “More earthquake faults discovered at the Salton Sea”
May 15, 2009 CBS 5, “Lake Tahoe may be due for huge quake, tsunami”
Science and Products
Multichannel sparker and chirp seismic reflection data collected offshore South East Alaska during USGS Field Activity 2017-621-FA
A bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the Eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada
Multibeam bathymetry and acoustic-backscatter data collected in 2017 and 2018 of Noyes Submarine Canyon and vicinity, southeast Alaska
Multibeam bathymetry and acoustic-backscatter data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA
Sub-bottom chirp data acquired in the Salton Sea, California, between 2006 and 2008
Multibeam bathymetry and backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder
Reprocessed multichannel seismic-reflection (MCS) data from USGS field activity T-1-96-SC collected in San Diego Bay, California in 1996
Chirp sub-bottom data collected in 2019 in Whiskeytown Lake, California during USGS field activity 2018-686-FA
Multichannel minisparker, multichannel boomer, and chirp seismic-reflection data of USGS field activity 2017-612-FA collected in Puget Sound and Lake Washington in February of 2017
Multichannel minisparker seismic-reflection and chip sub bottom data collected in the Santa Barbara Channel in July of 2018
Multibeam bathymetry, acoustic backscatter, and multichannel minisparker seismic-reflection data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016
Quaternary faults offshore of California
Mapping, exploration, and characterization of the California continental margin and associated features from the California-Oregon border to Ensenada, Mexico
Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology
Right-lateral fault motion along the slope-basin transition, Gulf of Santa Catalina, southern California
An active fault system carrying a significant component of right-lateral strike-slip motion extends for ~60 km along the slope–basin transition, ~10 to 20 km offshore of the southern California coast from La Jolla to Dana Point. From south to north, this fault system includes the Carlsbad, San Onofre, and San Mateo fault zones. High-resolution single channel minisparker and chirp seismic reflectio
Tsunamigenic splay faults imply a long-term asperity in southern Prince William Sound, Alaska
Coseismic slip partitioning and uplift over multiple earthquake cycles is critical to understanding upper‐plate fault development. Bathymetric and seismic reflection data from the 1964 Mw9.2 Great Alaska earthquake rupture area reveal sea floor scarps along the tsunamigenic Patton Bay/Cape Cleare/Middleton Island fault system. The faults splay from a megathrust where duplexing and underplating pro
Subsurface controls on the development of the Cape Fear Slide Complex, central US Atlantic Margin
Practical approaches to maximizing the resolution of sparker seismic reflection data
The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution marine geo
Slope failure and mass transport processes along the Queen Charlotte Fault Zone, western British Columbia
Multibeam echosounder (MBES) images, 3.5 kHz seismic-reflection profiles and piston cores obtained along the southern Queen Charlotte Fault Zone are used to map and date mass-wasting events at this transform margin – a seismically active boundary that separates the Pacific Plate from the North American Plate. Whereas the upper continental slope adjacent to and east (upslope) of the fault zone offs
Slope failure and mass transport processes along the Queen Charlotte Fault, southeastern Alaska
The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for c. 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence
Deformation of the Pacific/North America plate boundary at Queen Charlotte Fault: The possible role of rheology
Corrugated megathrust revealed offshore from Costa Rica
The tectonically controlled San Gabriel Channel–Lobe Transition Zone, Catalina Basin, Southern California Borderland
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
Multichannel sparker and chirp seismic reflection data collected offshore South East Alaska during USGS Field Activity 2017-621-FA
A bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the Eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada
Multibeam bathymetry and acoustic-backscatter data collected in 2017 and 2018 of Noyes Submarine Canyon and vicinity, southeast Alaska
Multibeam bathymetry and acoustic-backscatter data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA
Sub-bottom chirp data acquired in the Salton Sea, California, between 2006 and 2008
Multibeam bathymetry and backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder
Reprocessed multichannel seismic-reflection (MCS) data from USGS field activity T-1-96-SC collected in San Diego Bay, California in 1996
Chirp sub-bottom data collected in 2019 in Whiskeytown Lake, California during USGS field activity 2018-686-FA
Multichannel minisparker, multichannel boomer, and chirp seismic-reflection data of USGS field activity 2017-612-FA collected in Puget Sound and Lake Washington in February of 2017
Multichannel minisparker seismic-reflection and chip sub bottom data collected in the Santa Barbara Channel in July of 2018
Multibeam bathymetry, acoustic backscatter, and multichannel minisparker seismic-reflection data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016
Quaternary faults offshore of California
Mapping, exploration, and characterization of the California continental margin and associated features from the California-Oregon border to Ensenada, Mexico
Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology
Right-lateral fault motion along the slope-basin transition, Gulf of Santa Catalina, southern California
An active fault system carrying a significant component of right-lateral strike-slip motion extends for ~60 km along the slope–basin transition, ~10 to 20 km offshore of the southern California coast from La Jolla to Dana Point. From south to north, this fault system includes the Carlsbad, San Onofre, and San Mateo fault zones. High-resolution single channel minisparker and chirp seismic reflectio
Tsunamigenic splay faults imply a long-term asperity in southern Prince William Sound, Alaska
Coseismic slip partitioning and uplift over multiple earthquake cycles is critical to understanding upper‐plate fault development. Bathymetric and seismic reflection data from the 1964 Mw9.2 Great Alaska earthquake rupture area reveal sea floor scarps along the tsunamigenic Patton Bay/Cape Cleare/Middleton Island fault system. The faults splay from a megathrust where duplexing and underplating pro
Subsurface controls on the development of the Cape Fear Slide Complex, central US Atlantic Margin
Practical approaches to maximizing the resolution of sparker seismic reflection data
The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution marine geo
Slope failure and mass transport processes along the Queen Charlotte Fault Zone, western British Columbia
Multibeam echosounder (MBES) images, 3.5 kHz seismic-reflection profiles and piston cores obtained along the southern Queen Charlotte Fault Zone are used to map and date mass-wasting events at this transform margin – a seismically active boundary that separates the Pacific Plate from the North American Plate. Whereas the upper continental slope adjacent to and east (upslope) of the fault zone offs
Slope failure and mass transport processes along the Queen Charlotte Fault, southeastern Alaska
The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for c. 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence
Deformation of the Pacific/North America plate boundary at Queen Charlotte Fault: The possible role of rheology
Corrugated megathrust revealed offshore from Costa Rica
The tectonically controlled San Gabriel Channel–Lobe Transition Zone, Catalina Basin, Southern California Borderland
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.