Steven M. Cahan
Steven Cahan is a Cartographer with the USGS Geology, Energy & Minerals (GEM) Science Center in Reston, VA.
Steven received a bachelors degree in geography from Virginia Tech in 2010. Since joining the USGS, Steven has provided support in GIS to several projects including the CO2 sequestration project, the Gulf Coast assessment, and the National Geologic Map Database. His work includes geospatial analysis, map production, and keeping image servers up to date.
Professional Experience
May 2010 - present, Cartographer, USGS Geology, Energy & Minerals Science Center, Reston, VA
Education and Certifications
B.A. Geography - Geospatial and Environmental Analysis, Virginia Tech
Science and Products
Filter Total Items: 25
Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for t
Authors
Matthew D. Merrill, Ernie R. Slucher, Tina L. Roberts-Ashby, Peter D. Warwick, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage res
Authors
Marc L. Buursink, Steven M. Cahan, Peter D. Warwick
Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas
The 2007 Energy Independence and Security Act directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and is intended to be used at regional to sub-basinal scales.
The Williston Bas
Authors
Marc L. Buursink, Matthew D. Merrill, William H. Craddock, Tina L. Roberts-Ashby, Sean T. Brennan, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska
This report presents fourteen storage assessment units (SAUs) from the Alaska North Slope and two SAUs from the Kandik Basin of Alaska. The Alaska North Slope is a broad, north-dipping coastal plain that is underlain by a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic during three major tectonic sequences: the Mississippian through Triassic Elles
Authors
William H. Craddock, Marc L. Buursink, Jacob A. Covault, Sean T. Brennan, Colin A. Doolan, Ronald M. Drake, Matthew D. Merrill, Tina L. Roberts-Ashby, Ernie R. Slucher, Peter D. Warwick, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast
This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At
Authors
Tina L. Roberts-Ashby, Sean T. Brennan, Marc L. Buursink, Jacob A. Covault, William H. Craddock, Ronald M. Drake, Matthew D. Merrill, Ernie R. Slucher, Peter D. Warwick, Madalyn S. Blondes, Mayur A. Gosai, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska
This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The describ
Authors
Ronald M. Drake, Sean T. Brennan, Jacob A. Covault, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. Thi
Authors
Marc L. Buursink, Ernie R. Slucher, Sean T. Brennan, Colin A. Doolan, Ronald M. Drake, Matthew D. Merrill, Peter D. Warwick, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas
2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This
Authors
Marc L. Buursink, William H. Craddock, Madalyn S. Blondes, Phillip A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Columbia Basin of Oregon, Washington, and Idaho, and the Western Oregon-Washington basins
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. T
Authors
Jacob A. Covault, Madalyn S. Blondes, Steven M. Cahan, Christina A. DeVera, P.A. Freeman, Celeste D. Lohr
National assessment of geologic carbon dioxide storage resources: methodology implementation
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the asses
Authors
Madalyn S. Blondes, Sean T. Brennan, Matthew D. Merrill, Marc L. Buursink, Peter D. Warwick, Steven M. Cahan, M.D. Corum, Troy A. Cook, William H. Craddock, Christina A. DeVera, Ronald M. Drake, Lawrence J. Drew, P.A. Freeman, Celeste D. Lohr, Ricardo A. Olea, Tina L. Roberts-Ashby, Ernie R. Slucher, Brian A. Varela
Preliminary catalog of the sedimentary basins of the United States
One hundred forty-four sedimentary basins (or groups of basins) in the United States (both onshore and offshore) are identified, located, and briefly described as part of a Geographic Information System (GIS) data base in support of the Geologic Carbon Dioxide Sequestration National Assessment Project (Brennan and others, 2010). This catalog of basins is designed to provide a check list and basic
Authors
James L. Coleman, Steven M. Cahan
Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources
The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twel
Authors
Matthew D. Merrill, Jacob A. Covault, William H. Craddock, Ernie R. Slucher, Peter D. Warwick, Madalyn S. Blondes, Mayur A. Gosai, P.A. Freeman, Steven M. Cahan, Celeste D. Lohr
Science and Products
Filter Total Items: 25
Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for t
Authors
Matthew D. Merrill, Ernie R. Slucher, Tina L. Roberts-Ashby, Peter D. Warwick, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage res
Authors
Marc L. Buursink, Steven M. Cahan, Peter D. Warwick
Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas
The 2007 Energy Independence and Security Act directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and is intended to be used at regional to sub-basinal scales.
The Williston Bas
Authors
Marc L. Buursink, Matthew D. Merrill, William H. Craddock, Tina L. Roberts-Ashby, Sean T. Brennan, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska
This report presents fourteen storage assessment units (SAUs) from the Alaska North Slope and two SAUs from the Kandik Basin of Alaska. The Alaska North Slope is a broad, north-dipping coastal plain that is underlain by a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic during three major tectonic sequences: the Mississippian through Triassic Elles
Authors
William H. Craddock, Marc L. Buursink, Jacob A. Covault, Sean T. Brennan, Colin A. Doolan, Ronald M. Drake, Matthew D. Merrill, Tina L. Roberts-Ashby, Ernie R. Slucher, Peter D. Warwick, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast
This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At
Authors
Tina L. Roberts-Ashby, Sean T. Brennan, Marc L. Buursink, Jacob A. Covault, William H. Craddock, Ronald M. Drake, Matthew D. Merrill, Ernie R. Slucher, Peter D. Warwick, Madalyn S. Blondes, Mayur A. Gosai, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska
This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The describ
Authors
Ronald M. Drake, Sean T. Brennan, Jacob A. Covault, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. Thi
Authors
Marc L. Buursink, Ernie R. Slucher, Sean T. Brennan, Colin A. Doolan, Ronald M. Drake, Matthew D. Merrill, Peter D. Warwick, Madalyn S. Blondes, P.A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas
2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This
Authors
Marc L. Buursink, William H. Craddock, Madalyn S. Blondes, Phillip A. Freeman, Steven M. Cahan, Christina A. DeVera, Celeste D. Lohr
Geologic framework for the national assessment of carbon dioxide storage resources: Columbia Basin of Oregon, Washington, and Idaho, and the Western Oregon-Washington basins
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. T
Authors
Jacob A. Covault, Madalyn S. Blondes, Steven M. Cahan, Christina A. DeVera, P.A. Freeman, Celeste D. Lohr
National assessment of geologic carbon dioxide storage resources: methodology implementation
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the asses
Authors
Madalyn S. Blondes, Sean T. Brennan, Matthew D. Merrill, Marc L. Buursink, Peter D. Warwick, Steven M. Cahan, M.D. Corum, Troy A. Cook, William H. Craddock, Christina A. DeVera, Ronald M. Drake, Lawrence J. Drew, P.A. Freeman, Celeste D. Lohr, Ricardo A. Olea, Tina L. Roberts-Ashby, Ernie R. Slucher, Brian A. Varela
Preliminary catalog of the sedimentary basins of the United States
One hundred forty-four sedimentary basins (or groups of basins) in the United States (both onshore and offshore) are identified, located, and briefly described as part of a Geographic Information System (GIS) data base in support of the Geologic Carbon Dioxide Sequestration National Assessment Project (Brennan and others, 2010). This catalog of basins is designed to provide a check list and basic
Authors
James L. Coleman, Steven M. Cahan
Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources
The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twel
Authors
Matthew D. Merrill, Jacob A. Covault, William H. Craddock, Ernie R. Slucher, Peter D. Warwick, Madalyn S. Blondes, Mayur A. Gosai, P.A. Freeman, Steven M. Cahan, Celeste D. Lohr