Skip to main content
U.S. flag

An official website of the United States government

Fish, Streams, and Water Quality

The Chesapeake Bay watershed supports important recreational and commercial fisheries, but many are declining due to poor water quality, loss of quality habitat and increased invasive species. The USGS science activities are improving the understanding of how restoration and conservation efforts, along with land-use and climate change, are affecting conditions for fish, wildlife, and people.

Filter Total Items: 133

Occurrence of toxic contaminant mixtures in surface water and groundwater in agricultural watersheds of the Chesapeake Bay

Issue The widespread use of pesticides and fertilizers, application of biosolids and manure, and large-scale animal feeding operations result in contaminant mixtures occurring in streams and rivers (figure 1). These nonpoint sources are affected by multiple processes (such as stream discharge, seasonality and management practices) that influence contaminant occurrence in surface and groundwater...
link

Occurrence of toxic contaminant mixtures in surface water and groundwater in agricultural watersheds of the Chesapeake Bay

Issue The widespread use of pesticides and fertilizers, application of biosolids and manure, and large-scale animal feeding operations result in contaminant mixtures occurring in streams and rivers (figure 1). These nonpoint sources are affected by multiple processes (such as stream discharge, seasonality and management practices) that influence contaminant occurrence in surface and groundwater...
Learn More

Bioaccumulation of Mercury in Fish Varied by Species and Location in the Chesapeake Bay Watershed—Summary of Existing Data and a Roadmap for Integrated Monitoring

Fish mercury data from State monitoring programs and research studies within the Chesapeake Bay were compiled and summarized to provide a comprehensive overview of the variation in fish mercury concentrations among species and habitats within the watershed. These data are put into context with existing health benchmarks for humans, birds, and fish. Scientists also provide a roadmap for an...
link

Bioaccumulation of Mercury in Fish Varied by Species and Location in the Chesapeake Bay Watershed—Summary of Existing Data and a Roadmap for Integrated Monitoring

Fish mercury data from State monitoring programs and research studies within the Chesapeake Bay were compiled and summarized to provide a comprehensive overview of the variation in fish mercury concentrations among species and habitats within the watershed. These data are put into context with existing health benchmarks for humans, birds, and fish. Scientists also provide a roadmap for an...
Learn More

Altered flow affects the biological health of streams in the Chesapeake Bay watershed

Issue: The natural cycle of water flow, known as the flow regime, is one of the primary habitat conditions needed for healthy biological communities in streams. However, human activities have drastically altered the natural flow regime of most of the world’s rivers and streams, including those in the Chesapeake watershed, which has resulted in changes not only to the natural habitat but also...
link

Altered flow affects the biological health of streams in the Chesapeake Bay watershed

Issue: The natural cycle of water flow, known as the flow regime, is one of the primary habitat conditions needed for healthy biological communities in streams. However, human activities have drastically altered the natural flow regime of most of the world’s rivers and streams, including those in the Chesapeake watershed, which has resulted in changes not only to the natural habitat but also...
Learn More

Atmospheric nitrogen deposition in the Chesapeake Bay watershed: A history of change

Issue: Atmospheric deposition is one of the principal sources of nitrogen to the Chesapeake watershed with implications for patterns of nutrient loading, anoxia, and eutrophication in the Bay.
link

Atmospheric nitrogen deposition in the Chesapeake Bay watershed: A history of change

Issue: Atmospheric deposition is one of the principal sources of nitrogen to the Chesapeake watershed with implications for patterns of nutrient loading, anoxia, and eutrophication in the Bay.
Learn More

USGS Contributes to Revised Plans for Chesapeake Water-Quality and Toxic Contaminant Goal

Issue: The Chesapeake Bay Program (CBP), through the Strategic Review System (SRS), reviews progress toward the 10 goals and associated outcomes of the Chesapeake Watershed Agreement. Each outcome is managed by a specific CBP Goal Implementation Team and their associated workgroups. During review of each outcome every two years, a workgroup is responsible to prepare materials for (1) summarizing...
link

USGS Contributes to Revised Plans for Chesapeake Water-Quality and Toxic Contaminant Goal

Issue: The Chesapeake Bay Program (CBP), through the Strategic Review System (SRS), reviews progress toward the 10 goals and associated outcomes of the Chesapeake Watershed Agreement. Each outcome is managed by a specific CBP Goal Implementation Team and their associated workgroups. During review of each outcome every two years, a workgroup is responsible to prepare materials for (1) summarizing...
Learn More

New Virus Identified in Melanistic Skin Lesions on Smallmouth Bass from the Chesapeake Bay Watershed

Scientists determined the risk factors associated with smallmouth bass melanistic skin lesions on smallmouth bass in the Susquehanna and Potomac Rivers, in the Chesapeake Bay watershed. A new virus, which appears to be a member of an emerging viral family, the Adomaviridae, was identified in the lesions. Questions remain about the full characterization of the virus and the role of environmental...
link

New Virus Identified in Melanistic Skin Lesions on Smallmouth Bass from the Chesapeake Bay Watershed

Scientists determined the risk factors associated with smallmouth bass melanistic skin lesions on smallmouth bass in the Susquehanna and Potomac Rivers, in the Chesapeake Bay watershed. A new virus, which appears to be a member of an emerging viral family, the Adomaviridae, was identified in the lesions. Questions remain about the full characterization of the virus and the role of environmental...
Learn More

Fact Sheet Summarizes Nutrient Trends and Drivers in the Chesapeake Watershed

Issue: Trends in nitrogen and phosphorus, and the complex factors affecting their change, provide important insights into the effectiveness of efforts to reduce nutrients from reaching the tidal waters of the Bay. The nutrient reductions are needed to improve water-quality conditions in the tidal waters for fisheries and submerged aquatic vegetation.
link

Fact Sheet Summarizes Nutrient Trends and Drivers in the Chesapeake Watershed

Issue: Trends in nitrogen and phosphorus, and the complex factors affecting their change, provide important insights into the effectiveness of efforts to reduce nutrients from reaching the tidal waters of the Bay. The nutrient reductions are needed to improve water-quality conditions in the tidal waters for fisheries and submerged aquatic vegetation.
Learn More

Land-use influences on estrogenic-endocrine disruption in fish within the Chesapeake Bay watershed

Issue: Effects of exposure to estrogenic-chemical contaminants have been observed in many fish species worldwide. One effect is described as “intersex” because fish will take on characteristics of the other sex, such as immature eggs forming in male fish. Studies in the Chesapeake Bay watershed have also identified the exposure of fish to endocrine-disrupting compounds. The estrogenic-endocrine...
link

Land-use influences on estrogenic-endocrine disruption in fish within the Chesapeake Bay watershed

Issue: Effects of exposure to estrogenic-chemical contaminants have been observed in many fish species worldwide. One effect is described as “intersex” because fish will take on characteristics of the other sex, such as immature eggs forming in male fish. Studies in the Chesapeake Bay watershed have also identified the exposure of fish to endocrine-disrupting compounds. The estrogenic-endocrine...
Learn More

New Review of Sediment Science Informs Choices of Management Actions in the Chesapeake

Issue: The Chesapeake Bay Program (CBP) is pursuing restoration efforts to improve habitats and associated water quality for fisheries, both in the watershed and estuary. Excess sediment decreases light in tidal waters for submerged aquatic vegetation, harms oysters, carries contaminants, and impairs stream health throughout the watershed. The CBP is implementing management actions and policies...
link

New Review of Sediment Science Informs Choices of Management Actions in the Chesapeake

Issue: The Chesapeake Bay Program (CBP) is pursuing restoration efforts to improve habitats and associated water quality for fisheries, both in the watershed and estuary. Excess sediment decreases light in tidal waters for submerged aquatic vegetation, harms oysters, carries contaminants, and impairs stream health throughout the watershed. The CBP is implementing management actions and policies...
Learn More

Effects of introduced species on native brook trout: a guide to the scientific literature

Issue: Native brook trout ( Salvelinus fontinalis ) are of great ecological, cultural, and economic importance in eastern North America, and their restoration is a focus of the Chesapeake Bay Program. Introduced, non-native species can jeopardize native brook trout, and more information on these effects are needed.
link

Effects of introduced species on native brook trout: a guide to the scientific literature

Issue: Native brook trout ( Salvelinus fontinalis ) are of great ecological, cultural, and economic importance in eastern North America, and their restoration is a focus of the Chesapeake Bay Program. Introduced, non-native species can jeopardize native brook trout, and more information on these effects are needed.
Learn More

USGS develops tool to further examine nutrient and sediment trends in the Chesapeake Bay Watershed

The U.S. Geological Survey (USGS) has developed the nontidal network mapper to share the short-term (2009-2018) water-year nutrient and suspended-sediment load and trend results for the Chesapeake Bay Program’s (CBP) non-tidal network (NTN). The network is a cooperative effort by USGS, the U.S. Environmental Protection Agency (USEPA), and agencies in the states of the Chesapeake watershed and the...
link

USGS develops tool to further examine nutrient and sediment trends in the Chesapeake Bay Watershed

The U.S. Geological Survey (USGS) has developed the nontidal network mapper to share the short-term (2009-2018) water-year nutrient and suspended-sediment load and trend results for the Chesapeake Bay Program’s (CBP) non-tidal network (NTN). The network is a cooperative effort by USGS, the U.S. Environmental Protection Agency (USEPA), and agencies in the states of the Chesapeake watershed and the...
Learn More

New Synthesis Describes Current Understanding of Factors Driving Nutrient Trends in Streams of the Chesapeake Bay Watershed

Issue: Excessive nitrogen and phosphorus in Chesapeake Bay since the 1950s have contributed to low dissolved oxygen leading to fish kills, and poor water clarity and associated loss of submerged aquatic vegetation. The Chesapeake Bay Program partnership has been working to improve aquatic conditions in the Bay and its tidal tributaries, and streams in the watershed, by reducing inputs of nutrients...
link

New Synthesis Describes Current Understanding of Factors Driving Nutrient Trends in Streams of the Chesapeake Bay Watershed

Issue: Excessive nitrogen and phosphorus in Chesapeake Bay since the 1950s have contributed to low dissolved oxygen leading to fish kills, and poor water clarity and associated loss of submerged aquatic vegetation. The Chesapeake Bay Program partnership has been working to improve aquatic conditions in the Bay and its tidal tributaries, and streams in the watershed, by reducing inputs of nutrients...
Learn More