Skip to main content
U.S. flag

An official website of the United States government

Publications

Since 1966, CERC scientists have published over 2000 peer reviewed articles and reports. Browse our publications below or search CERC's publications by author or title through the USGS Publications Warehouse.

If you need assistance in locating a specific CERC publication, please contact the CERC Librarian.

Filter Total Items: 1407

Some effects of mirex on two warm-water fishes

The effects of mirex on two species of warm-water fishes were studied in three experiments in which the fish were exposed either by feeding a mirex-treated diet, or by treating the holding ponds with a mirex formulation. Bluegills were used in the feeding experiment, where three different levels of mirex were incorporated into the diet and fed to fish held in plastic pools, and in the first pond-e
Authors
Charles C. Van Valin, Austin K. Andrews, Lafayette L. Eller

The relative toxicities of several pesticides to naiads of three species of stoneflies

Static bioassays were conducted to determine the relative acute toxicities of some insecticides, herbicides, fungicides, a defoliant, and a molluscicide to the naiads of three species of stonef!y, Pteronarcys califomica, Pteronarcella badia, and Claassenia sabulosa. Toxic effects were measured by determination of median lethal concn (Lcoo) for 24-, 48-, and 96-hr exposures, at 15.5C. Endrin and di
Authors
Herman O. Sanders, Oliver B. Cope

Electrophoretic separation of fish brain esterases

Fish brains were homogenized in an all-glass Potter-Elvehjem-type tissue grinder in 40% sucrose solution. The homogenate concentration was 10 brains/ml for both the bluegill and channel catfish. The brei was centrifuged at 34,700 g for 30 min at 5 C, and 30 J.lliters of the supernatant were used per column for electrophoresis.
Authors
Charles O. Knowles, Suresh K. Arurkar, James W. Hogan

Degradation of organophosphates by fish liver phosphatases

Liver homogenates of bluegill, Lepomis macrochirus Rafinesque, and channel catfish, Ictalurus punctatus (Walbaum), were shown by a manometric technique to contain soluble enzymes capable of degrading diisopropyl phosphorofluoridate (DFP) and 2,2-dichlorovinyl dimethyl phosphate (dichlorvos). Hydrolysis of the compounds was greatest in the presence of the manganic ion. Tentative identification of c
Authors
James W. Hogan, Charles O. Knowles

Some enzymatic properties of brain Acetylcholinesterase from bluegill and channel catfish

Using a manometric technique an acetylcholinesterase (EC 3.1.1.7, acetylcholine acetyl-hydrolase) was demonstrated in brain tissue from the bluegill, Lepomis macrochirus Rafinesque, and the channel catfish, Ictalurus punctatus (Walbaum). The activities were 19 and 37 μmoles acetylcholine hydrolyzed/milligram protein per hour for the bluegill and channel catfish enzymes, respectively. The optimum s
Authors
James W. Hogan, Charles O. Knowles

The oxidation of drugs by fishes

1. Fish liver microsomal systems have been found to catalyze the hydroxylation of aniline and acetanilide, the N-demethylation of aminopyrine and the O-dealkylation of phenacetin.2. These systems are similar to the corresponding mammalian enzymes and they may be considered to be mixed function oxidase since they require NADPH and oxygen. An absolute requirement for oxygen, however, was difficult t
Authors
Donald R. Buhler, Mary E. Rasmusson

Partial hydrolysis of dieldrin by Aerobacter aerogenes

Although dieldrin (1,2,3,4,10,10-hexachloro- 6,7-epoxy-1 ,4 ,4a ,5 ,6 ,7 ,8, 8a-octahydro-1 ,4-endo, exo-5, 8-dimethanonaphthalene) metabolism by mammals (F. Korte and H. Arent, Life Sci. 4:2017, 1965) and insects (D. F. Heath and M. Vanderkar, Brit. J. Ind. Med. 21:269, 1964) has been reported, little is known about the degradation of this important pesticide by microorganisms. Korte et al. (Ann.
Authors
Gary Wedemeyer

Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmetha
Authors
Gary Wedemeyer

Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes: I. Metabolic products

Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl
Authors
Gary Wedemeyer

Contamination of the freshwater ecosystem by pesticides

A large part of our disquieting present-day pesticide problem is intimately tied to the freshwater ecosystem. Economic poisons are used in so many types of terrain to control so many kinds of organisms that almost all lakes and streams are likely to be contaminated. In addition to accidental contamination many pesticides are deliberately applied directly to fresh waters for suppression of aquatic
Authors
Oliver B. Cope

Dechlorination of DDT by Aerobacter aerogenes

Dechlorination of DDT to DDD in higher animals requires the presence of molecular oxygen, but in microorganisms the presence of oxygen hinders dechlorination. In cell-free preparations of Aerobacter aerogenes, the use of selected metabolic inhibitors indicated that reduced Fe(II) cytochrome oxidase was responsible for DDT dechlorination. This finding may possibly explain. the persistence of DDT re
Authors
Gary Wedemeyer

Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens

Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic
Authors
Gary Wedemeyer