Publications
Filter Total Items: 1883
Applications of nonergodic site response models to ShakeAlert case studies in the Los Angeles area
In this study, we explore whether the Parker and Baltay (2022) site response models for the Los Angeles (LA) basin region can improve ground‐motion forecasts in the U.S. Geological Survey ShakeAlert earthquake early warning system (hereafter ShakeAlert). We implement the peak ground acceleration and peak ground velocity site response models of Parker and Baltay (2022) in ShakeAlert via the earthqu
Authors
Rongrong Lin, Grace Alexandra Parker, Jeffrey J. McGuire, Annemarie S. Baltay Sundstrom
Using corrected and imputed polarity measurements to improve focal mechanisms in a regional earthquake catalog near the Mt. Lewis Fault Zone, California
We utilized relative polarity measurements and machine learning techniques to better resolve focal mechanisms and stress orientations considering a catalog of ∼29,000 relocated earthquakes that occurred during 1984–2021 in the southeastern San Francisco Bay Area. Earthquake focal mechanisms are commonly produced using P wave first motion polarities, which traditionally requires events to be well-r
Authors
Robert Skoumal, Jeanne L. Hardebeck, David R. Shelly
On the scale-dependence of fault surface roughness
Defining roughness as the ratio of height to length, the standard approach to characterize amplitudes of single fault, joint and fracture surfaces is to measure average height as a function of profile length. Empirically, this roughness depends strongly on scale. The ratio is approximately 0.01 at a few mm but 10× smaller at a few tens of meters. Surfaces are rougher at small scales. However, thes
Authors
Nicholas M. Beeler
Solid Earth–atmosphere interaction forces during the 15 January 2022 Tonga eruption
Rapid venting of volcanic material during the 15 January 2022 Tonga eruption generated impulsive downward reaction forces on the Earth of ~2.0 × 1013 N that radiated seismic waves observed throughout the planet, with ~25 s source bursts persisting for ~4.5 hours. The force time history is determined by analysis of teleseismic P waves and Rayleigh waves with periods approximately <50 s, providing i
Authors
Ricardo Garza-Giron, Thorne Lay, Frederick Pollitz, Hiroo Kanamori, Luis Rivera
Fracture-mesh faulting in the swarm-like 2020 Maacama sequence revealed by high-precision earthquake detection, location, and focal mechanisms
In August of 2020, an earthquake sequence initiated within the Maacama fault zone in northern California, raising questions about its relationship with the larger-scale fault. To investigate the faulting geometry and its implications for physical processes driving seismicity, we applied an integrated, multi-faceted seismic analysis including waveform-correlation-based event detection, relative rel
Authors
David R. Shelly, Robert John Skoumal, Jeanne L. Hardebeck
Using seismic noise correlation to determine the shallow velocity structure of the Seattle basin, Washington
Cross-correlation waveforms of seismic noise in the Seattle basin, Washington, were analyzed to determine the group velocities of surface waves and constrain the shear-wave velocity (VS) for depths less than about 2 kilometers (km). Twenty broadband seismometers were deployed for about 3 weeks in three dense arrays separated by about 5 km, with minimum intra-array station spacing of about 0.5 km.
Authors
Arthur Frankel, Paul Bodin
Estimates of k0 and effects on ground motions in the San Francisco Bay area
Ground‐motion studies are a key component of seismic hazard analyses and often rely on information of the source, path, and site. Extensive research has been done on each of these parameters; however, site‐specific studies are of particular interest to seismic hazard studies, especially in the field of earthquake engineering, as near‐site conditions can have a significant impact on the resulting g
Authors
Tara Nye, Valerie J. Sahakian, Elias King, Annemarie S. Baltay Sundstrom, Alexis Klimasewski
COSMOS Ground-Motion Simulation Working Group workshops #1 and #2
These 2 workshops were held in response to interest generated from sessions on the use of simulated earthquake ground motions at the 2020 and 2021 Consortium of Organizations for Strong Motion Observation Systems (COSMOS) Technical Sessions. The discussions at the Technical Sessions highlighted desires to promote the use of simulated earthquake ground motions for engineering applications and the n
Authors
Brad T. Aagaard, Aysegul Askan, Sanaz Rezaeian, Sean Kamran Ahdi, Alan Yong
Using a grid-search approach to validate the Graves-Pitarka broadband simulation method
This work assesses the ability of the Graves–Pitarka simulation approach to reproduce observed ground motions for 12 California and Baja California earthquakes. A total of 240 realizations are computed for each earthquake and compared with recorded strong motions from near-fault sites. In addition to spatial variability in slip, each realization samples from discrete combinations of average ruptur
Authors
Robert Graves
Hybrid broadband ground-motion simulation validation of small magnitude active shallow crustal earthquakes in New Zealand
This article presents a comprehensive validation of the hybrid broadband ground-motion simulation approach (via the commonly used Graves and Pitarka method) in a New Zealand context with small magnitude point source ruptures using an extensive set of 5218 ground motions recorded at 212 sites from 479 active shallow crustal earthquakes across the country. Modifications to the simulation method infe
Authors
Robin L. Lee, Brendon A. Bradley, Peter J. Stafford, Robert Graves, Adrian Rodriguez-Marek
Regional-scale mapping of landscape response to extreme precipitation using repeat lidar and object-based image analysis
Extreme precipitation events may cause flooding, slope failure, erosion, deposition, and damage to infrastructure over a regional scale, but the impacts of these events are often difficult to fully characterize. Regional-scale landscape change occurred during an extreme rain event in June 2012 in northeastern Minnesota. Landscape change was documented by 8,000 km2 of airborne lidar data collected
Authors
Stephen B. DeLong, Morena N Hammer, Zachary T. Engle, Emilie Richard, Andrew Breckenridge, Karen B. Gran, Carrie E. Jennings, Andre Jalobeanu
An interactive viewer to improve operational aftershock forecasts
The U.S. Geological Survey (USGS) issues forecasts for aftershocks about 20 minutes after most earthquakes above M 5 in the United States and its territories, and updates these forecasts 75 times during the first year. Most of the forecasts are issued automatically, but some forecasts require manual intervention to maintain accuracy. It is important to identify the sequences whose forecasts will b
Authors
Gabrielle Madison Paris, Andrew J. Michael