Publications
Filter Total Items: 2009
Seismic hazard assessment for areas of volcanic activity in western Kingdom of Saudi Arabia
Earthquake swarms caused by volcanic activity, tectonic stresses, or industrial operations (oil and gas production) can pose considerable risk for nearby settlements. As a rule, a probabilistic seismic hazard assessment (PSHA) that is based on time-independent earthquakes does not take into account earthquake swarms because of their statistically time-dependent nature. We describe the...
Authors
Hani M. Zahran, Vladimir Sokolov, Ian C. F. Stewart
Ground-motion prediction equations for the western Kingdom of Saudi Arabia
Ground-motion prediction equations (GMPEs) for the western Kingdom of Saudi Arabia are developed by employing a mixed-effects regression model to modify the Boore and others (2014) Next Generation Attenuation-West2 (NGA-West2) project GMPEs. NGA-West2 addressed several key issues concerning GMPEs for shallow crustal earthquakes in active tectonic regions. However, the NGA-West2 input...
Authors
Ryota Kiuchi, Walter D. Mooney, Hani M. Zahran
Ambient seismic noise tomography of the Kingdom of Saudi Arabia
Harrat Rahat is a Cenozoic volcanic field in the west-central part of the Kingdom of Saudi Arabia, 150 kilometers east of the Red Sea, and is the site of the most recent eruption in the country (1256 C.E.; 654 in the year of the Hijra). The city of Al Madīnah lies at the north end of Harrat Rahat, and its volcanic and seismic risks are frequently reassessed. In 2009 C.E. an earthquake...
Authors
Francesco Civilini, Walter D. Mooney, Martha K. Savage, John Townend
Thickness of the Saudi Arabian crust
As part of a joint Saudi Geological Survey (SGS) and U.S. Geological Survey (USGS) project, we analyzed P-wave receiver functions from seismic stations covering most of the Kingdom of Saudi Arabia to map the thickness of the crust across the Arabia Plate. We present an update of crustal-thickness estimates and fill in gaps for the western Arabian Shield and the rifted margin at the Red...
Authors
Alexander R. Blanchette, Simon L. Klemperer, Walter D. Mooney, Hani M. Zahran
The Saudi Geological Survey-U.S. Geological Survey northern Harrat Rahat project—Styles, rates, causes, and hazards of volcanism near Al Madīnah al Munawwarah, Kingdom of Saudi Arabia
Active volcanic systems pose serious hazards to people and property including inundation and incineration by lava, blanketing by tephra (volcanic ash), exposure to noxious volcanic gases, and damage from shallow earthquakes triggered by ascending molten material (magma). To improve understanding of volcanism and associated seismicity on the western Arabia Plate, the Saudi Geological...
Authors
Thomas W. Sisson, Andrew T. Calvert, Walter D. Mooney
The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast
We present the 2023 U.S. Geological Survey time‐independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time‐averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation...
Authors
Ned Field, Kevin R. Milner, Alexandra Elise Hatem, Peter M. Powers, Frederick Pollitz, Andrea L. Llenos, Yuehua Zeng, Kaj M. Johnson, Bruce E. Shaw, Devin McPhillips, Jessica Ann Thompson Jobe, Allison Shumway, Andrew J. Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth H. Hearn, Charles Mueller, Arthur Frankel, Mark D. Petersen, Christopher DuRoss, Richard W. Briggs, Morgan T. Page, Justin Rubinstein, Julie Herrick
Total shortening estimates across the western Greater Caucasus Mountains from balanced cross sections and area balancing
The Greater Caucasus orogen forms the northern edge of the Arabia-Eurasia collision zone. Although the orogen has long been assumed to exhibit dominantly thick-skinned style deformation via reactivation of high-angle extensional faults, recent work suggests the range may have accommodated several hundred kilometers or more of shortening since its ~30 Ma initiation, and this shortening...
Authors
Charles Cashman Trexler, Eric S. Cowgill, Dylan A Vasey, Nathan A. Niemi
Panel review of Ground Motion Characterization Model in 2023 NSHM
The 2023 National Seismic Hazard Model (NSHM; Petersen et al., 2023) has two major components – a seismic source characterization (SSC) model and a ground motion characterization (GMC) model. The US Geological Survey (USGS) established separate panels to review and provide input on these two models. Both panels are advisory, meaning that they provide input on technical issues for...
Authors
Jonathan P. Stewart, Norman A. Abrahamson, Gail M. Atkinson, John G. Anderson, Kenneth W. Campbell, Chris H. Cramer, Michael Kolaj, Grace Alexandra Parker
Crustal block-controlled contrasts in deformation, uplift, and exhumation in the Santa Cruz Mountains, California, USA, imaged through apatite (U-Th)/He thermochronology and 3-D geological modeling
Deformation along strike-slip plate margins often accumulates within structurally partitioned and rheologically heterogeneous crustal blocks within the plate boundary. In these cases, contrasts in the physical properties and state of juxtaposed crustal blocks may play an important role in accommodation of deformation. Near the San Francisco Bay Area, California, USA, the Pacific−North...
Authors
Curtis William Baden, David L. Shuster, Jeremy H. Hourigan, Jared T. Gooley, Melanie Cahill, George E. Hilley
Time-dependent weakening of granite at hydrothermal conditions
The evolution of a fault's frictional strength during the interseismic period is a critical component of the earthquake cycle, yet there have been relatively few studies that examine the time-dependent evolution of strength at conditions representative of seismogenic depths. Using a simulated fault in Westerly granite, we examined how frictional strength evolves under hydrothermal...
Authors
Tamara Nicole Jeppson, David A. Lockner, Nicholas M. Beeler, Diane E. Moore
Evidence of Seattle Fault earthquakes from patterns of deep-seated landslides
Earthquake‐induced landslides can record information about the seismic shaking that generated them. In this study, we present new mapping, Light Detection and Ranging‐derived roughness dating, and analysis of over 1000 deep‐seated landslides from the Puget Lowlands of Washington, U.S.A., to probe the landscape for past Seattle fault earthquake information. With this new landslide...
Authors
Erich Herzig, Alison Duvall, Adam Booth, Ian Patrick Stone, Erin Wirth, Sean Richard LaHusen, Joseph Wartman, Alex R.R. Grant
A population-based performance evaluation of the ShakeAlert earthquake early warning system for M 9 megathrust earthquakes in the Pacific Northwest, U.S.A.
We evaluate the potential performance of the ShakeAlert earthquake early warning system for M 9 megathrust earthquakes in the Pacific Northwest (PNW) using synthetic seismograms from 30 simulated M 9 earthquake scenarios on the Cascadia subduction zone. The timeliness and accuracy of source estimates and effectiveness of ShakeAlert alert contours are evaluated with a station‐based alert...
Authors
Mika Thompson, J. Renate Hartog, Erin Wirth