Skip to main content
U.S. flag

An official website of the United States government

Data

Filter Total Items: 248

Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2016

Chalk Cliffs located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et

Debris-flow video files, Chalk Cliffs, Colorado, USA, 2017

Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km^2 study area. This data release includes videos of debris-flows and floods captured by high-definition cameras placed at four different locat

Initial Observations of Landslides triggered by the 2018 Anchorage, Alaska earthquake

This data release provides the locations of 43 landslides that occurred during the 2018 Anchorage, Alaska earthquake mapped from high-resolution lidar (1-m). Lidar data can be accessed via the Alaska Division of Geological and Geophysical Surveys elevation portal (https://elevation.alaska.gov). Each landslide is represented as a point corresponding to the approximate location of the mid-point of t

Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0

This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between t

Map data from landslides triggered by Hurricane Maria in a section of Naranjito, Puerto Rico

Hurricane Maria caused widespread landsliding throughout Puerto Rico during September 2017. Previous detailed landslide inventories following the hurricane include Bessette-Kirton et al. (2017, 2019). Here we continue that work with an in-depth look at a portion of northwest Naranjito, which is a municipality in the northeastern part of the main island. To study a characteristic sample of landslid

Map data from landslides triggered by Hurricane Maria in three study areas in the Lares Municipality, Puerto Rico

In late September 2017, intense precipitation associated with Hurricane Maria caused extensive landsliding across Puerto Rico. Much of the Lares municipality in central-western Puerto Rico was severely impacted by landslides. Landslide density in this region was mapped as greater than 25 landslides/km2 (Bessette-Kirton et al., 2019). In order to better understand the controlling variables of lands

Displacement and strain field from the 2019 Ridgecrest earthquakes derived from analysis of WorldView optical satellite imagery (ver. 2.0, May 2021)

This Data Release contains co-seismic horizontal and vertical displacements of the 2019 Ridgecrest earthquakes derived from sub-pixel cross correlation of WorldView satellite optical imagery. Additionally, the dataset contains the 2-dimensionsal (2D) and 3-dimensional (3D) surface strain fields, inverted from the surface displacements. Associated publication: Barnhart, W.D., Gold, R.D., Hollingsw

Data Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed

This dataset presents where, why, and how much probabilistic ground motions have changed with the 2018 update of the National Seismic Hazard Model (NSHM) for the conterminous U.S. (CONUS) vs. the 2014 NSHM. In the central and eastern U.S., hazard changes are the result of updated ground motion models (further broken down by median and epistemic uncertainty, aleatory variability, and site effects m

Ground motion Fourier and response spectra from Utah earthquakes, 2010--2020

Records from strong motion stations were downloaded from FDSN and CESMD data centers with a search radius of approximately 220 km from Salt Lake City. Waveforms were processed to deconvolve instrument response and for baseline corrections. Signal was separated from noise using an automated P-wave picker. The signal was then windowed to include the mean plus two standard deviations of the signal. A

Soil moisture monitoring following the 2009 Station Fire, California, USA, 2016-2019

This data release includes 2016-2019 soil moisture timeseries for two drainage basins ("Arroyo Seco" and "Dunsmore Canyon") that burned during the 2009 Station Fire in Los Angeles County, California, USA. The Arroyo Seco (0.01 km2) and Dunsmore Canyon (0.5 km2) drainages include two soil pits, one located near the drainage divide and another near the basin outlet. Following the naming convention e

Gridded estimates of postfire debris flow frequency and magnitude for southern California

This data release contains gridded estimates of postfire debris flow probability and magnitude for six different rainfall and wildfire scenarios in southern California. The scenarios represent the present and possible future precipitation and fire regimes for the region. The results are provided for 1 km2 cells across the study area. The data release accompanies the journal article Kean, J.W. and

Precipitation and soil-moisture data from the Two Towers landslide, Trinity County, California

We performed hourly monitoring of precipitation and soil moisture at the Two Towers landslide located in northern California near the town of Zenia. Data were acquired January 19, 2017 to April 29, 2020. Rainfall was measured near the center of the landslide using a tipping-bucket rain gauge with resolution of 0.254 mm and accuracy of ±2% to 250 mm/h (resolutions and accuracies stated herein are a
Was this page helpful?