Skip to main content
U.S. flag

An official website of the United States government

Publications

Scientific reports, journal articles, and information products produced by USGS Pacific Coastal and Marine Science Center scientists.

Filter Total Items: 1337

Labeling poststorm coastal imagery for machine learning: Measurement of interrater agreement

Classifying images using supervised machine learning (ML) relies on labeled training data—classes or text descriptions, for example, associated with each image. Data-driven models are only as good as the data used for training, and this points to the importance of high-quality labeled data for developing a ML model that has predictive skill. Labeling data is typically a time-consuming, manual proc
Authors
Evan B. Goldstein, Daniel D. Buscombe, Eli D. Lazarus, Somya Mohanty, Shah N. Rafique, K A Anarde, Andrew D Ashton, Tomas Beuzen, Katherine A. Castagno, Nicholas Cohn, Matthew P. Conlin, Ashley Ellenson, Megan Gillen, Paige A. Hovenga, Jin-Si R. Over, Rose V. Palermo, Katherine Ratlif, Ian R Reeves, Lily H. Sanborn, Jessamin A. Straub, Luke A. Taylor, Elizabeth J. Wallace, Jonathan Warrick, Phillipe Alan Wernette, Hannah E Williams

Hydrological control shift from river level to rainfall in the reactivated Guobu slope besides the Laxiwa hydropower station in China

Landslides are common geohazards associated with natural drivers such as precipitation, land degradation, toe erosion by rivers and wave attack, and ground shaking. On the other hand, human alterations such as inundation by water impoundment or rapid drawdown may also destabilize the surrounding slopes. The Guobu slope is an ancient rockslide on the banks of the Laxiwa hydropower station reservoir
Authors
Xuguo Shi, Xie Hu, Nicholas Sitar, Robert Kayen, Shengwen Qi, Houjun Jiang, Xudong Wang

Flooding duration and volume more important than peak discharge in explaining 18 years of gravel–cobble river change

Floods play a critical role in geomorphic change, but whether peak magnitude, duration, volume, or frequency determines the resulting magnitude of erosion and deposition is a question often proposed in geomorphic effectiveness studies. This study investigated that question using digital elevation model differencing to compare and contrast three hydrologically distinct epochs of topographic change
Authors
Arielle Gervasi, Gregory Pasternack, Amy E. East

Rebounds, regresses, and recovery: A 15-year study of the coral reef community at Pila‘a, Kaua‘i after decades of natural and anthropogenic stress events

Pila‘a reef on the north shore of Kaua‘i, Hawai‘i was subjected to a major flood event in 2001 that deposited extensive sediment on the reef flat, resulting in high coral mortality. To document potential recovery, this study replicated benthic and sediment surveys conducted immediately following the event and 15 years later. Coral cores were analyzed to determine coral growth rates and density. Ou
Authors
Ku'ulei S. Rodgers, A. Richards Dona, Y. O. Stender, A. O. Tsang, J. H. J. Han, Rebecca Weible, Nancy G. Prouty, Curt D. Storlazzi, Andrew M. Graham

Assessment of barrier island morphological change in northern Alaska

Arctic barriers islands are highly dynamic features influenced by a variety of oceanographic, geologic, and environmental factors. Many Alaskan barrier islands and spits serve as habitat and protection for native species, as well as shelter the coast from waves and storms that cause flooding and degradation of coastal villages. This study summarizes changes to barrier morphology in time and space
Authors
Anna I. Hamilton, Ann E. Gibbs, Li H. Erikson, Anita C. Engelstad

Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay

Reliable and long-term hindcast data of water levels are essential in quantifying return period and values of extreme water levels. In order to inform design decisions on a local flood control district level, process-based numerical modeling has proven an essential tool to provide the needed temporal and spatial coverage for different extreme value analysis methods. To determine the importance of
Authors
Cornelis M. Nederhoff, Rohin Saleh, Babak Tehranirad, Liv M. Herdman, Li H. Erikson, Patrick L. Barnard, Mick Van der Wegen

Cohesive sediment modeling in a shallow estuary: Model and environmental implications of sediment parameter variation

Numerical models of sediment transport in estuarine systems rely on parameter values that are often poorly constrained and can vary on timescales relevant to model processes. The selection of parameter values can affect the accuracy of model predictions, while environmental variation of these parameters can impact the temporal and spatial ranges of sediment fluxes, erosion, and deposition in the r

Authors
Rachel Allen, Jessica R. Lacy, Andrew W. Stevens

Miocene phosphatization of rocks from the summit of Rio Grande Rise, Southwest Atlantic Ocean

Marine phosphorites are an important part of the oceanic phosphorus cycle and are related to the effects of long-term global climate changes. We use petrography, mineralogy, rare earth elements contents, and 87Sr/86Sr-determined carbonate fluorapatite (CFA) and calcite ages to investigate the paragenesis and history of phosphatization of carbonate sediments, limestones, ferromanganese crusts, and
Authors
Mariana Benites, James R. Hein, Kira Mizell, Luigi Jovane

Multiple climate change-driven tipping points for coastal systems

As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the
Authors
Patrick L. Barnard, Jenifer Dugan, Henry M. Page, Nathan J. Wood, Juliette A. Finzi Hart, Daniel Cayan, Li H. Erikson, David A. Hubbard, Monique Myers, John M. Melack, Samuel F. Iacobellis

Extent of impact of deep-sea nodule mining midwater plumes is influenced by sediment loading, turbulence and thresholds

Deep-sea polymetallic nodule mining research activity has substantially increased in recent years, but the expected level of environmental impact is still being established. One environmental concern is the discharge of a sediment plume into the midwater column. We performed a dedicated field study using sediment from the Clarion Clipperton Fracture Zone. The plume was monitored and tracked using
Authors
Carlos Munoz-Royo, Thomas Peacock, Matthew Alford, Jerome Smith, Arnaud Le Boyer, Chinmay Kulkarni, Pierre Lermusiaux, Patrick Haley, C Mirabito, Dayang Wang, Eric Adams, Raphael Ouillon, Alexander Breugem, Boudewijn Decrop, Thijs Lanckreit, Rohit Supekar, Andrew Rzeznik, Amy Gartman, Se-Jong Ju

Multiple melt source origin of the Line Islands (Pacific Ocean)

The Line Islands volcanic chain in the central Pacific Ocean exhibits many characteristics of a hotspot-generated seamount chain; however, the lack of a predictable age progression has stymied previous models for the origin of this feature. We combined plate-tectonic reconstructions with seamount age dates and available geochemistry to develop a new model that involves multiple melt regions and mu
Authors
Robert Pockalny, Ginger Barth, Barry Eakins, Katherine A. Kelley, Christina Wertman

Bomb-produced radiocarbon across the South Pacific Gyre — A new record from American Samoa with utility for fisheries science

Coral skeletal structures can provide a robust record of nuclear bomb produced 14C with valuable insight into air-sea exchange processes and water movement with applications to fisheries science. To expand these records in the South Pacific, a coral core from Tutuila Island, American Samoa was dated with density band counting covering a 59-yr period (1953–2012). Seasonal signals in elemental ratio
Authors
Allen Andrews, Nancy G. Prouty, Olivia Cheriton
Was this page helpful?