Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens. However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows (lahars) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from debris flows from Mount Rainier are more densely populated than similar areas around Mount St. Helens.
Learn more: USGS Cascades Volcano Observatory
Related
How dangerous is Mount Rainier?
What is the greatest hazard presented by Mount Rainier?
Can an eruption at one volcano trigger an eruption at another volcano?
How far did the ash from Mount St. Helens travel?
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
How can we tell when a volcano will erupt?
Why is it important to monitor volcanoes?
Is it dangerous to work on volcanoes? What precautions do scientists take?
How many eruptions have there been in the Cascades during the last 4,000 years?
Can lakes near volcanoes become acidic enough to be dangerous to people and animals?

Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Researcher Amanda Kissel pauses by a lake in Mt. Rainier National Park.
Researcher Amanda Kissel pauses by a lake in Mt. Rainier National Park.

Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
USGS volcano seismologist, Seth Moran, describes how seismology and seismic networks are used to mitigate volcanic hazards.
USGS volcano seismologist, Seth Moran, describes how seismology and seismic networks are used to mitigate volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.


Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Geologic field-trip guide to volcanism and its interaction with snow and ice at Mount Rainier, Washington
How would a volcanic eruption affect your Tribe?
Ten ways Mount St. Helens changed our world—The enduring legacy of the 1980 eruption
Field trip guide to Mount St. Helens, Washington—Recent and ancient volcaniclastic processes and deposits
When volcanoes fall down—Catastrophic collapse and debris avalanches
2018 update to the U.S. Geological Survey national volcanic threat assessment
U.S. Geological Survey Volcano Hazards Program—Assess, forecast, prepare, engage
Mount Rainier— Living safely with a volcano in your backyard
Eruptions in the Cascade Range during the past 4,000 years
Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington
Eruptions of Mount St. Helens : past, present, and future
Volcano hazards from Mount Rainier, Washington, revised 1998
Related
How dangerous is Mount Rainier?
What is the greatest hazard presented by Mount Rainier?
Can an eruption at one volcano trigger an eruption at another volcano?
How far did the ash from Mount St. Helens travel?
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
How can we tell when a volcano will erupt?
Why is it important to monitor volcanoes?
Is it dangerous to work on volcanoes? What precautions do scientists take?
How many eruptions have there been in the Cascades during the last 4,000 years?
Can lakes near volcanoes become acidic enough to be dangerous to people and animals?

Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Researcher Amanda Kissel pauses by a lake in Mt. Rainier National Park.
Researcher Amanda Kissel pauses by a lake in Mt. Rainier National Park.

Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
USGS volcano seismologist, Seth Moran, describes how seismology and seismic networks are used to mitigate volcanic hazards.
USGS volcano seismologist, Seth Moran, describes how seismology and seismic networks are used to mitigate volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.


Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.