Contrasting photos of Heart Spring on Geyser Hill in the Upper Geyser Basin from 1998 (left) and 2019 (right). Can you spot differences in the hot spring? Photos courtesy of the National Park Service.
What is the relationship between volcanism and the geysers and hot springs in Yellowstone?
Heat and volcanic gases from slowly cooling magma rise and warm the dense salty water that occupies fractured rocks above the Yellowstone magma chamber. That brine, in turn, transfers its heat to overlying fresh groundwater which is recharged by rainfall and snowmelt from the surface. Water boiling at depth below the surface is hotter than the temperature of boiling at the surface. If it rises quickly, this superheated water can flash to steam, propelling both steam and hot water to the surface as a geyser. More commonly, hot water rises and loses its heat at a steady rate, flowing to the surface as a hot spring.
Learn more:
Related
How hot is Yellowstone?
Yellowstone is a plateau high in the Rocky Mountains, and is snowbound for over six months per year. The mean annual temperature is 2.2°C (36°F), barely above the freezing point of water. However, Yellowstone is also an active geothermal area with hot springs emerging at ~92°C (~198°F) (the boiling point of water at Yellowstone's mean altitude) and steam vents reported as high as 135°C (275°F)...
How do scientists know what’s going on beneath the ground at Yellowstone? Is Yellowstone monitored for volcanic activity?
Yellowstone Volcano is monitored for signs of volcanic activity. The Yellowstone Volcano Observatory (YVO) is a partnership between the U.S. Geological Survey (USGS), Yellowstone National Park, the University of Utah, the University of Wyoming, UNAVCO, the Montana Bureau of Mines and Geology, the Idaho Geological Survey, and the Wyoming State Geological Survey. YVO closely monitors volcanic...
How much volcanic activity has there been at Yellowstone since the most recent giant eruption?
Since the most recent giant ( caldera-forming ) eruption 631,000 years ago, approximately 80 relatively nonexplosive eruptions have occurred. Of these eruptions, at least 27 were rhyolite lava flows in the caldera, 13 were rhyolite lava flows outside the caldera, and 40 were basalt vents outside the caldera. The most recent volcanic eruption at Yellowstone, a lava flow on the Pitchstone Plateau...
When was the last time Yellowstone erupted?
The most recent volcanic activity at Yellowstone consisted of rhyolitic lava flows that erupted approximately 70,000 years ago. The largest of these flows formed the Pitchstone Plateau in southwestern Yellowstone National Park. Learn more: Yellowstone Eruption History The evolution of the Yellowstone Plateau Volcani Field: Past, present, and future!
How fast is the hotspot moving under Yellowstone?
Actually, the source of the hotspot is more or less stationary at depth within the Earth, and the North America plate moves southwest across it. The average rate of movement of the plate in the Yellowstone area for the last 16.5 million years has been about 4.6 centimeters (1.8 inches) per year. However, if shorter time intervals are analyzed, the plate can be inferred to have moved about 6.1...
Can we use the heat from Yellowstone for energy?
Geothermal energy (heat energy from the Earth's interior) is used to generate electricity in a variety of places throughout the world. Although Yellowstone National Park and its surroundings are a significant geothermal resource, the Park itself is off limits to development. Geothermal developments often cause a decrease in the flow of nearby hot springs and other geothermal features (like geysers...
How big is the magma chamber under Yellowstone?
Yellowstone is underlain by two magma bodies . The shallower one is composed of rhyolite (a high-silica rock type) and stretches from 5 km to about 17 km (3 to 10 mi) beneath the surface and is about 90 km (55 mi) long and about 40 km (25 mi) wide. The chamber is mostly solid, with only about 5-15% melt. The deeper reservoir is composed of basalt (a low-silica rock type) and extends from 20 to 50...
Contrasting photos of Heart Spring on Geyser Hill in the Upper Geyser Basin from 1998 (left) and 2019 (right). Can you spot differences in the hot spring? Photos courtesy of the National Park Service.
USGS geologist Deborah Bergfeld collects a gas sample from a superheated (hotter than the boiling point) fumarole in Little Hot Springs Valley at Lassen Volcanic National Park.
USGS geologist Deborah Bergfeld collects a gas sample from a superheated (hotter than the boiling point) fumarole in Little Hot Springs Valley at Lassen Volcanic National Park.
eruption of Lone Star Geyser, Yellowstone National Park
eruption of Lone Star Geyser, Yellowstone National Park
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
Visitors watching an eruption of Old Faithful Geyser from the Old Faithful Inn's balcony.
Visitors watching an eruption of Old Faithful Geyser from the Old Faithful Inn's balcony.
USGS emeritus geologist Robert Christiansen describes his career working on Yellowstone geology from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past including mapping and dating of past super eruptions 2.1 million years ago, 1.3 million years ago and 640,000 years ago.
USGS emeritus geologist Robert Christiansen describes his career working on Yellowstone geology from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past including mapping and dating of past super eruptions 2.1 million years ago, 1.3 million years ago and 640,000 years ago.
USGS emeritus geologist Patrick Muffler describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Patrick's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
USGS emeritus geologist Patrick Muffler describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Patrick's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
USGS emeritus geologist RobertFournier describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
USGS emeritus geologist RobertFournier describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
Photograph of the Old Faithful Geyser erupting in Yellowstone Nationl Park. Old Faithful was named in 1870 during the Washburn-Langford-Doane Yellowstone expedition and was the first geyser in the Park to be named.
Photograph of the Old Faithful Geyser erupting in Yellowstone Nationl Park. Old Faithful was named in 1870 during the Washburn-Langford-Doane Yellowstone expedition and was the first geyser in the Park to be named.
USGS geochemist Bill Evans measures the temperature of a superheated (hotter than the boiling point) fumarole in Lassen Volcanic National Park.
USGS geochemist Bill Evans measures the temperature of a superheated (hotter than the boiling point) fumarole in Lassen Volcanic National Park.
USGS geochemist Cathy Janik (left) and Iceland Geosurvey chemist Jón Örn Bjarnason (right) collect a gas sample from a fumarole in Lassen Volcanic National Park.
USGS geochemist Cathy Janik (left) and Iceland Geosurvey chemist Jón Örn Bjarnason (right) collect a gas sample from a fumarole in Lassen Volcanic National Park.
Mammoth Hot Springs at Yellowstone National Park, Wyoming.
Mammoth Hot Springs at Yellowstone National Park, Wyoming.
Yellowstone Volcano Observatory 2022 annual report
Yellowstone Volcano Observatory 2020 annual report
Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure
Yellowstone Volcano Observatory
Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?
Tracking changes in Yellowstone's restless volcanic system
The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming
Related
How hot is Yellowstone?
Yellowstone is a plateau high in the Rocky Mountains, and is snowbound for over six months per year. The mean annual temperature is 2.2°C (36°F), barely above the freezing point of water. However, Yellowstone is also an active geothermal area with hot springs emerging at ~92°C (~198°F) (the boiling point of water at Yellowstone's mean altitude) and steam vents reported as high as 135°C (275°F)...
How do scientists know what’s going on beneath the ground at Yellowstone? Is Yellowstone monitored for volcanic activity?
Yellowstone Volcano is monitored for signs of volcanic activity. The Yellowstone Volcano Observatory (YVO) is a partnership between the U.S. Geological Survey (USGS), Yellowstone National Park, the University of Utah, the University of Wyoming, UNAVCO, the Montana Bureau of Mines and Geology, the Idaho Geological Survey, and the Wyoming State Geological Survey. YVO closely monitors volcanic...
How much volcanic activity has there been at Yellowstone since the most recent giant eruption?
Since the most recent giant ( caldera-forming ) eruption 631,000 years ago, approximately 80 relatively nonexplosive eruptions have occurred. Of these eruptions, at least 27 were rhyolite lava flows in the caldera, 13 were rhyolite lava flows outside the caldera, and 40 were basalt vents outside the caldera. The most recent volcanic eruption at Yellowstone, a lava flow on the Pitchstone Plateau...
When was the last time Yellowstone erupted?
The most recent volcanic activity at Yellowstone consisted of rhyolitic lava flows that erupted approximately 70,000 years ago. The largest of these flows formed the Pitchstone Plateau in southwestern Yellowstone National Park. Learn more: Yellowstone Eruption History The evolution of the Yellowstone Plateau Volcani Field: Past, present, and future!
How fast is the hotspot moving under Yellowstone?
Actually, the source of the hotspot is more or less stationary at depth within the Earth, and the North America plate moves southwest across it. The average rate of movement of the plate in the Yellowstone area for the last 16.5 million years has been about 4.6 centimeters (1.8 inches) per year. However, if shorter time intervals are analyzed, the plate can be inferred to have moved about 6.1...
Can we use the heat from Yellowstone for energy?
Geothermal energy (heat energy from the Earth's interior) is used to generate electricity in a variety of places throughout the world. Although Yellowstone National Park and its surroundings are a significant geothermal resource, the Park itself is off limits to development. Geothermal developments often cause a decrease in the flow of nearby hot springs and other geothermal features (like geysers...
How big is the magma chamber under Yellowstone?
Yellowstone is underlain by two magma bodies . The shallower one is composed of rhyolite (a high-silica rock type) and stretches from 5 km to about 17 km (3 to 10 mi) beneath the surface and is about 90 km (55 mi) long and about 40 km (25 mi) wide. The chamber is mostly solid, with only about 5-15% melt. The deeper reservoir is composed of basalt (a low-silica rock type) and extends from 20 to 50...
Contrasting photos of Heart Spring on Geyser Hill in the Upper Geyser Basin from 1998 (left) and 2019 (right). Can you spot differences in the hot spring? Photos courtesy of the National Park Service.
Contrasting photos of Heart Spring on Geyser Hill in the Upper Geyser Basin from 1998 (left) and 2019 (right). Can you spot differences in the hot spring? Photos courtesy of the National Park Service.
USGS geologist Deborah Bergfeld collects a gas sample from a superheated (hotter than the boiling point) fumarole in Little Hot Springs Valley at Lassen Volcanic National Park.
USGS geologist Deborah Bergfeld collects a gas sample from a superheated (hotter than the boiling point) fumarole in Little Hot Springs Valley at Lassen Volcanic National Park.
eruption of Lone Star Geyser, Yellowstone National Park
eruption of Lone Star Geyser, Yellowstone National Park
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
Visitors watching an eruption of Old Faithful Geyser from the Old Faithful Inn's balcony.
Visitors watching an eruption of Old Faithful Geyser from the Old Faithful Inn's balcony.
USGS emeritus geologist Robert Christiansen describes his career working on Yellowstone geology from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past including mapping and dating of past super eruptions 2.1 million years ago, 1.3 million years ago and 640,000 years ago.
USGS emeritus geologist Robert Christiansen describes his career working on Yellowstone geology from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past including mapping and dating of past super eruptions 2.1 million years ago, 1.3 million years ago and 640,000 years ago.
USGS emeritus geologist Patrick Muffler describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Patrick's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
USGS emeritus geologist Patrick Muffler describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Patrick's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
USGS emeritus geologist RobertFournier describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
USGS emeritus geologist RobertFournier describes his career working on Yellowstone geysers and hydrothermal systems from the 1960's through 2014. Bob's work along with his USGS colleagues revealed the details of Yellowstone's explosive volcanic past and how its spectacular geysers and other hydrothermal features work.
Photograph of the Old Faithful Geyser erupting in Yellowstone Nationl Park. Old Faithful was named in 1870 during the Washburn-Langford-Doane Yellowstone expedition and was the first geyser in the Park to be named.
Photograph of the Old Faithful Geyser erupting in Yellowstone Nationl Park. Old Faithful was named in 1870 during the Washburn-Langford-Doane Yellowstone expedition and was the first geyser in the Park to be named.
USGS geochemist Bill Evans measures the temperature of a superheated (hotter than the boiling point) fumarole in Lassen Volcanic National Park.
USGS geochemist Bill Evans measures the temperature of a superheated (hotter than the boiling point) fumarole in Lassen Volcanic National Park.
USGS geochemist Cathy Janik (left) and Iceland Geosurvey chemist Jón Örn Bjarnason (right) collect a gas sample from a fumarole in Lassen Volcanic National Park.
USGS geochemist Cathy Janik (left) and Iceland Geosurvey chemist Jón Örn Bjarnason (right) collect a gas sample from a fumarole in Lassen Volcanic National Park.
Mammoth Hot Springs at Yellowstone National Park, Wyoming.
Mammoth Hot Springs at Yellowstone National Park, Wyoming.