GOES-West image of the explosive eruption of the Hunga Tonga volcano in 2022. The explosion atmospheric pressure waves that traveled around the world. Read more here.
What would happen if a "supervolcano" eruption occurred again at Yellowstone?
If another large, caldera-forming eruption were to occur at Yellowstone, its effects would be worldwide. Such a giant eruption would have regional effects such as falling ash and short-term (years to decades) changes to global climate. Those parts of the surrounding states of Montana, Idaho, and Wyoming that are closest to Yellowstone would be affected by pyroclastic flows, while other places in the United States would be impacted by falling ash (the amount of ash would decrease with distance from the eruption site). Such eruptions usually form calderas, broad volcanic depressions created as the ground surface collapses as a result of withdrawal of partially molten rock (magma) below. Fortunately, the chances of this sort of eruption at Yellowstone are exceedingly small in the next few thousands of years.
Learn more:
Related
How big is the magma chamber under Yellowstone?
What is the difference between "magma" and "lava"?
When was the last time Yellowstone erupted?
Why are there so many earthquakes at Yellowstone?
Can we drill into Yellowstone to stop it from erupting?
What type of eruption will Yellowstone have if it erupts again?
How far would ash travel if Yellowstone had a large explosive eruption?
What is a supervolcano? What is a supereruption?
What are some examples of supervolcanoes?
GOES-West image of the explosive eruption of the Hunga Tonga volcano in 2022. The explosion atmospheric pressure waves that traveled around the world. Read more here.

Dr. Kenneth Pierce studied the geology and geomorphology of the greater Yellowstone area for nearly his entire career with the U.S. Geological Survey. From 1965 to present, Dr.
Dr. Kenneth Pierce studied the geology and geomorphology of the greater Yellowstone area for nearly his entire career with the U.S. Geological Survey. From 1965 to present, Dr.

- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.

Satellite image from the USGS/NASA Landsat-8 satellite showing the eruption cloud at Pavlof Volcano on November 15 at 12:46 pm AKST (21:46 UTC). This is just a portion of the eruption cloud, which extended for more than 250 miles to the northwest at the time this image was collected.
Satellite image from the USGS/NASA Landsat-8 satellite showing the eruption cloud at Pavlof Volcano on November 15 at 12:46 pm AKST (21:46 UTC). This is just a portion of the eruption cloud, which extended for more than 250 miles to the northwest at the time this image was collected.
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
A caldera is a large, usually circular volcanic depression formed when magma is withdrawn or erupted from a shallow underground magma reservoir. It is often difficult to visualize how calderas form. This simple experiment using flour, a balloon, tubing, and a bicycle pump, provides a helpful visualization for caldera formation.
A caldera is a large, usually circular volcanic depression formed when magma is withdrawn or erupted from a shallow underground magma reservoir. It is often difficult to visualize how calderas form. This simple experiment using flour, a balloon, tubing, and a bicycle pump, provides a helpful visualization for caldera formation.

Professor Michael Ort (Northern Arizona University) and graduate student Joel Unema examine deposits from the 2008 eruption of Okmok volcano in Alaska as part of their research to reconstruct the complex history of the eruption. Dr.
Professor Michael Ort (Northern Arizona University) and graduate student Joel Unema examine deposits from the 2008 eruption of Okmok volcano in Alaska as part of their research to reconstruct the complex history of the eruption. Dr.
Ash is resuspended from Redoubt Volcano eruption
Ash is resuspended from Redoubt Volcano eruption
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: "How do we know Yellowstone is a volcano?", "What is a Supervolcano?", "What is a Caldera?","Why are there geysers at Yellowstone?", and "What are the other geologic hazards in Yellowstone?"
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: "How do we know Yellowstone is a volcano?", "What is a Supervolcano?", "What is a Caldera?","Why are there geysers at Yellowstone?", and "What are the other geologic hazards in Yellowstone?"
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to provide a tour of the Yellowstone Volcano Observatory: "What is YVO?", "How do you monitor volcanic activity at Yellowstone?", "How are satellites used to study deformation?", "Do you monitor geysers or any other aspect of the Park?", "Are earthquakes and
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to provide a tour of the Yellowstone Volcano Observatory: "What is YVO?", "How do you monitor volcanic activity at Yellowstone?", "How are satellites used to study deformation?", "Do you monitor geysers or any other aspect of the Park?", "Are earthquakes and
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic eruptions at Yellowstone: When was the last supereruption at Yellowstone?", "Have any eruptions occurred since the last supereruption?", "Is Yellowstone overdue for an eruption?", "What does the magma below indicate about a possible erupt
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic eruptions at Yellowstone: When was the last supereruption at Yellowstone?", "Have any eruptions occurred since the last supereruption?", "Is Yellowstone overdue for an eruption?", "What does the magma below indicate about a possible erupt

The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
Volcano and earthquake monitoring plan for the Yellowstone Caldera system, 2022–2032
Living with volcano hazards
2018 update to the U.S. Geological Survey national volcanic threat assessment
U.S. Geological Survey Volcano Hazards Program—Assess, forecast, prepare, engage
Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?
Tracking changes in Yellowstone's restless volcanic system
The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana
Volcanic ash fall - a "hard rain" of abrasive particles
Related
How big is the magma chamber under Yellowstone?
What is the difference between "magma" and "lava"?
When was the last time Yellowstone erupted?
Why are there so many earthquakes at Yellowstone?
Can we drill into Yellowstone to stop it from erupting?
What type of eruption will Yellowstone have if it erupts again?
How far would ash travel if Yellowstone had a large explosive eruption?
What is a supervolcano? What is a supereruption?
What are some examples of supervolcanoes?
GOES-West image of the explosive eruption of the Hunga Tonga volcano in 2022. The explosion atmospheric pressure waves that traveled around the world. Read more here.
GOES-West image of the explosive eruption of the Hunga Tonga volcano in 2022. The explosion atmospheric pressure waves that traveled around the world. Read more here.

Dr. Kenneth Pierce studied the geology and geomorphology of the greater Yellowstone area for nearly his entire career with the U.S. Geological Survey. From 1965 to present, Dr.
Dr. Kenneth Pierce studied the geology and geomorphology of the greater Yellowstone area for nearly his entire career with the U.S. Geological Survey. From 1965 to present, Dr.

- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.

Satellite image from the USGS/NASA Landsat-8 satellite showing the eruption cloud at Pavlof Volcano on November 15 at 12:46 pm AKST (21:46 UTC). This is just a portion of the eruption cloud, which extended for more than 250 miles to the northwest at the time this image was collected.
Satellite image from the USGS/NASA Landsat-8 satellite showing the eruption cloud at Pavlof Volcano on November 15 at 12:46 pm AKST (21:46 UTC). This is just a portion of the eruption cloud, which extended for more than 250 miles to the northwest at the time this image was collected.
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
Public Lecture on Yellowstone Volcano by Jake Lowenstern at Menlo Park, CA on January 23, 2014. The Q&A at the end of the talk can be found on the original source video (Source URL).
A caldera is a large, usually circular volcanic depression formed when magma is withdrawn or erupted from a shallow underground magma reservoir. It is often difficult to visualize how calderas form. This simple experiment using flour, a balloon, tubing, and a bicycle pump, provides a helpful visualization for caldera formation.
A caldera is a large, usually circular volcanic depression formed when magma is withdrawn or erupted from a shallow underground magma reservoir. It is often difficult to visualize how calderas form. This simple experiment using flour, a balloon, tubing, and a bicycle pump, provides a helpful visualization for caldera formation.

Professor Michael Ort (Northern Arizona University) and graduate student Joel Unema examine deposits from the 2008 eruption of Okmok volcano in Alaska as part of their research to reconstruct the complex history of the eruption. Dr.
Professor Michael Ort (Northern Arizona University) and graduate student Joel Unema examine deposits from the 2008 eruption of Okmok volcano in Alaska as part of their research to reconstruct the complex history of the eruption. Dr.
Ash is resuspended from Redoubt Volcano eruption
Ash is resuspended from Redoubt Volcano eruption
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: "How do we know Yellowstone is a volcano?", "What is a Supervolcano?", "What is a Caldera?","Why are there geysers at Yellowstone?", and "What are the other geologic hazards in Yellowstone?"
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: "How do we know Yellowstone is a volcano?", "What is a Supervolcano?", "What is a Caldera?","Why are there geysers at Yellowstone?", and "What are the other geologic hazards in Yellowstone?"
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to provide a tour of the Yellowstone Volcano Observatory: "What is YVO?", "How do you monitor volcanic activity at Yellowstone?", "How are satellites used to study deformation?", "Do you monitor geysers or any other aspect of the Park?", "Are earthquakes and
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to provide a tour of the Yellowstone Volcano Observatory: "What is YVO?", "How do you monitor volcanic activity at Yellowstone?", "How are satellites used to study deformation?", "Do you monitor geysers or any other aspect of the Park?", "Are earthquakes and
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic eruptions at Yellowstone: When was the last supereruption at Yellowstone?", "Have any eruptions occurred since the last supereruption?", "Is Yellowstone overdue for an eruption?", "What does the magma below indicate about a possible erupt
USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic eruptions at Yellowstone: When was the last supereruption at Yellowstone?", "Have any eruptions occurred since the last supereruption?", "Is Yellowstone overdue for an eruption?", "What does the magma below indicate about a possible erupt

The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.