Skip to main content
U.S. flag

An official website of the United States government

Publications

The following list of California Water Science Center publications includes both official USGS publications and journal articles authored by our scientists.

Filter Total Items: 1737

Stable isotopes provide insight into sources and cycling of N compounds in the Sacramento-San Joaquin Delta, California, USA

River deltas and their diverse array of aquatic environments are increasingly impacted by anthropogenic inputs of nitrogen (N). These inputs can alter the N biogeochemistry of these systems and promote undesirable phenomena including harmful algae blooms and invasive aquatic macrophytes. To examine N sources and biogeochemical processes in the Sacramento-San Joaquin Delta, a river delta located in
Authors
Joseph K. Fackrell, Tamara E. C. Kraus, Megan B. Young, Carol Kendall, Sara Peek

Yucaipa valley integrated hydrological model

IntroductionThe hydrologic system in the Yucaipa Valley watershed (YVW) was simulated using the coupled Groundwater and Surface-water FLOW model (GSFLOW; Markstrom and others, 2008). This study uses version 2.0 of GSFLOW, which is a combination of the Precipitation-Runoff Modeling System (PRMS; Markstrom and others, 2015), and the Newton-Raphson formulation of the Modular Groundwater-Flow Model (M
Authors
Ayman H. Alzraiee, John A. Engott, Geoffrey Cromwell, Linda R. Woolfenden

Hydrogeologic characterization of the Yucaipa groundwater subbasin

IntroductionWater management in the Santa Ana River watershed in San Bernardino and Riverside Counties in southern California (fig. A1) is complex with various water purveyors navigating geographic, geologic, hydrologic, and political challenges to provide a reliable water supply to stakeholders. As the population has increased throughout southern California, so has the demand for water. The Yucai
Authors
Geoffrey Cromwell, John A. Engott, Ayman H. Alzraiee, Christina Stamos-Pfeiffer, Gregory Mendez, Meghan C. Dick, Sandra Bond

Perfluoroalkyl and polyfluoroalkyl substances in groundwater used as a source of drinking water in the eastern United States

In 2019, 254 samples were collected from five aquifer systems to evaluate per- and polyfluoroalkyl substance (PFAS) occurrence in groundwater used as a source of drinking water in the eastern United States. The samples were analyzed for 24 PFAS, major ions, nutrients, trace elements, dissolved organic carbon (DOC), volatile organic compounds (VOCs), pharmaceuticals, and tritium. Fourteen of the 24

Authors
Peter B. McMahon, Andrea K. Tokranov, Laura M. Bexfield, Bruce D. Lindsey, Tyler D. Johnson, Melissa Lombard, Elise Watson

Simulation of groundwater and surface-water resources of the San Antonio Creek Valley watershed, Santa Barbara County, California

In the San Antonio Creek Valley watershed (SACVW), western Santa Barbara County, California, groundwater is the primary source of water for agricultural irrigation, the town of Los Alamos, and supplemental water to Vandenberg Space Force Base (VSFB). Groundwater pumpage has increased since the 1970s as non-irrigated agricultural land has been converted to irrigated land and as local pumping for mu
Authors
Linda R. Woolfenden, John A. Engott, Joshua Larsen, Geoffrey Cromwell

Hydrogeologic characterization of the San Antonio Creek Valley watershed, Santa Barbara County, California

The San Antonio Creek Valley watershed (SACVW) is located in western Santa Barbara County, about 15 miles south of Santa Maria and 55 miles north of Santa Barbara, California. The SACVW is about 135 square miles and encompasses the San Antonio Creek Valley groundwater basin; the SACVW is separated from adjacent groundwater basins by the Casmalia and Solomon Hills to the north, and the Purisima Hil
Authors
Geoffrey Cromwell, Donald S. Sweetkind, Jill N. Densmore, John A. Engott, Whitney A. Seymour, Joshua Larsen, Christopher P. Ely, Christina L. Stamos, Claudia C. Faunt

Hydrologic and geochemical characterization of the Petaluma River watershed, Sonoma County, California

Executive SummaryThe objectives of the study are to (1) develop an updated assessment of the hydrogeology and geochemistry of the Petaluma valley watershed (PVW) and (2) develop an integrated hydrologic model for the PVW. The purpose of this report is to describe the conceptual model of the hydrologic, hydrogeologic, and water-quality characteristics of the PVW and a numerical groundwater-flow mod
Authors
Jonathan A. Traum, Nicholas F. Teague, Donald S. Sweetkind, Tracy Nishikawa

Hydrology of the Yucaipa groundwater subbasin: Characterization and integrated numerical model, San Bernardino and Riverside Counties, California

Executive SummaryWater management in the Santa Ana River watershed in San Bernardino and Riverside Counties in southern California is a complex task with various water purveyors navigating geographic, geologic, hydrologic, and political challenges to provide a reliable water supply to stakeholders. As the population has increased throughout southern California, so has the demand for water. The Yuc

Geology and hydrogeology of the Yucaipa groundwater subbasin, San Bernardino and Riverside Counties, California

The Yucaipa groundwater subbasin (referred to in this report as the Yucaipa subbasin) is located about 75 miles (mi) east of of Los Angeles and about 12 mi southeast of the City of San Bernardino. In the Yucaipa subbasin, as in much of southern California, limited annual rainfall and large water demands can strain existing water supplies; therefore, understanding local surface water and groundwate
Authors
Geoffrey Cromwell, Jonathan C. Matti

Use case development for earth monitoring, analysis, and prediction (EarthMAP)—A road map for future integrated predictive science at the U.S. Geological Survey

Executive SummaryThe U.S. Geological Survey (USGS) 21st-century science strategy 2020–30 promotes a bureau-wide strategy to develop and deliver an integrated, predictive science capability that works at the scales and timelines needed to inform societally relevant resource management and protection and public safety and environmental health decisions (U.S. Geological Survey, 2021). This is the ove
Authors
Tamara S. Wilson, Mark T. Wiltermuth, Karen E. Jenni, Robert Horton, Randall J. Hunt, Dee M. Williams, Vivian P. Nolan, Nicholas G. Aumen, David S. Brown, Kyle W. Blasch, Peter S. Murdoch

Climate and land change impacts on future managed wetland habitat: A case study from California’s Central Valley

ConceptCalifornia’s Central Valley provides critical habitat for migratory waterbirds, yet only 10% of naturally occurring wetlands remain. Competition for limited water supplies and climate change will impact the long-term viability of these intensively managed habitats.ObjectivesForecast the distribution, abundance, and connectivity of surface water and managed wetland habitats, using 5 spatiall
Authors
Tamara S. Wilson, Elliott Matchett, Kristin B. Byrd, Erin Conlisk, Matthew E. Reiter, Cynthia Wallace, Lorraine E. Flint, Alan L. Flint, Monica Mei Jeen Moritsch

Watershed-scale risk to aquatic organisms from complex chemical mixtures in the Shenandoah River

River waters contain complex chemical mixtures derived from natural and anthropogenic sources. Aquatic organisms are exposed to the entire chemical composition of the water, resulting in potential effects at the organismal through ecosystem level. This study applied a holistic approach to assess landscape, hydrological, chemical, and biological variables. On-site mobile laboratory experiments were
Authors
Larry B. Barber, Kaycee E. Faunce, David Bertolatus, Michelle Hladik, Jeramy Roland Jasmann, Steffanie H. Keefe, Dana W. Kolpin, Michael T. Meyer, Jennifer L. Rapp, David A. Roth, Alan M. Vajda