Skip to main content
U.S. flag

An official website of the United States government

Publications

This list of Water Resources Mission Area publications includes both official USGS publications and journal articles authored by our scientists. A searchable database of all USGS publications can be accessed at the USGS Publications Warehouse.

Filter Total Items: 18424

Groundwater withdrawals and regional flow paths at and near Willow Grove and Warminster, Pennsylvania—Data compilation and preliminary simulations for conditions in 1999, 2010, 2013, 2016, and 2017

In 2014, groundwater samples from residential and public supply wells in the vicinity of two former U.S. Navy bases at Willow Grove and Warminster, and an active Air National Guard Station at Horsham, Bucks and Montgomery Counties, Pennsylvania, were found to have concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which are per- and polyfluoroalkyl substances (PF
Authors
Daniel J. Goode, Lisa A. Senior

Assessment of multi-stressors on compositional turnover of diatom, invertebrate and fish assemblages along an urban gradient in Pacific Northwest streams (USA)

This study is part of the regional stream-quality assessment (RSQA) conducted by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) project. The purpose of this study is to examine small streams along land-use and stressor gradients at the regional scale and to evaluate the relative importance of instream stressors on diatom, macroinvertebrate, and fish assemblages. In 201
Authors
Ian R. Waite, Yangdong Pan, Patrick Edwards

Holocene paleofloods and their climatological context, Upper Colorado River Basin, USA

Given its singular importance for water resources in the southwestern U.S., the Upper Colorado River Basin (UCRB) is remarkable for the paucity of its conventional hydrological record of extreme flooding. This study uses paleoflood hydrology to examine a small portion the underutilized, but very extensive natural record of Holocene extreme floods in the UCRB. We perform a meta-analysis of 77 ext
Authors
Taojun Liu, Lin Ji, Victor R. Baker, Tessa M. Harden, Michael L. Cline

Diatom enumeration method influences biological assessments of southeastern USA streams

Current fixed-count enumeration methods for benthic diatoms are likely inadequate for most research and monitoring objectives. These methods underestimate taxa richness and may fail to detect losses of species caused by human impacts. Consequently, the full potential of diatoms is not realized in current assessments of biological integrity or species diversity. In this study, we hypothesize that a
Authors
Meredith Tyree, Daren M. Carlisle, Sarah Spaulding

Preferential elution of ionic solutes in melting snowpacks: Improving process understanding through field observations and modeling in the Rocky Mountains

The preferential elution of ions from melting snowpacks is a complex problem that has been linked to temporary acidification of water bodies. However, the understanding of these processes in snowpacks around the world, including the polar regions that are experiencing unprecedented warming and melting, remains limited despite being instrumental in supporting climate change adaptation.In this study
Authors
Diogo Costa, Graham A. Sexstone, J.W. Pomeroy, Donald H. Campbell, David W. Clow, Alisa Mast

Groundwater availability of the Northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

Executive SummaryThe Northern High Plains aquifer underlies about 93,000 square miles of Colorado, Kansas, Nebraska, South Dakota, and Wyoming and is the largest subregion of the nationally important High Plains aquifer. Irrigation, primarily using groundwater, has supported agricultural production since before 1940, resulting in nearly $50 billion in sales in 2012. In 2010, the High Plains aquife
Authors
Steven M. Peterson, Jonathan P. Traylor, Moussa Guira

The response of stream ecosystems in the Adirondack region of New York to historical and future changes in atmospheric deposition of sulfur and nitrogen

The present-day acid-base chemistry of surface waters can be directly linked to contemporary observations of acid deposition; however, pre-industrial conditions are key to predicting the potential future recovery of stream ecosystems under decreasing loads of atmospheric sulfur (S) and nitrogen (N) deposition. The integrated biogeochemical model PnET-BGC was applied to 25 forest watersheds that re
Authors
Shuai Shao, Charles T. Driscoll, Timothy J. Sullivan, Douglas A. Burns, Barry P. Baldigo, Gregory B. Lawrence, Todd C. McDonnell

Shale gas development has limited effects on stream biology and geochemistry in a gradient-based, multiparameter study in Pennsylvania

The number of horizontally drilled shale oil and gas wells in the United States has increased from nearly 28,000 in 2007 to nearly 127,000 in 2017, and research has suggested the potential for the development of shale resources to affect nearby stream ecosystems. However, the ability to generalize current studies is limited by the small geographic scope as well as limited breadth and integration o

Authors
Adam Mumford, Kelly O. Maloney, Denise M. Akob, Sarah Nettemann, Arianne Proctor, Jason Ditty, Luke Ulsamer, Josh Lookenbill, Isabelle M. Cozzarelli

Predictive relations between acid-base chemistry and fish assemblages in streams of the Adirondack Mountains

Surface waters across much of New York State’s Adirondack Mountains were acidified in the late 20th century but began to recover following the 1990 Title IV Amendments to the Clean Air Act. Previous assessments of acidification recovery in the Adirondacks have generally been based on surface water chemistry data and inferred relationships to fish and other aquatic biota. Little data, however, has
Authors
Diane Bertok, Barry P. Baldigo, Scott D. George

SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection

We document the development and simulation characteristics of the next generation modeling system for seasonal to decadal prediction and projection at the Geophysical Fluid Dynamics Laboratory (GFDL). SPEAR (Seamless System for Prediction and EArth System Research) is built from component models recently developed at GFDL—the AM4 atmosphere model, MOM6 ocean code, LM4 land model, and SIS2 sea ice
Authors
Thomas L. Delworth, William F. Cooke, Alistair A. Adcroft, Mitchell Bushuk, Jan-Huey Chen, Krista A. Dunne, Paul Ginoux, Richard Gudgel, Lucas Harris, Matthew J. Harrison, Robert W. Hallberg, Nathaniel Johnson, Sarah B. Kapnick, Shian-Jian Lin, Feiyu Lu, Sergey Malyshev, Paul C. D. Milly, Hiroyuki Murakami, Vaishali Naik, Salvatore Pascale, David Paynter, Anthony Rosati, M. D. Schwarzkopf, Elena Shevliakova, Seth Underwood, Andrew T. Wittenberg, Baoqiang Xiang, Xiaosong Yang, Fanrong Zeng, Honghai Zhang, Liping Zhang, Ming Zhao

Numerical simulation of groundwater availability in central Moloka‘i, Hawai‘i

Since the 1990s, increased chloride concentrations of water pumped from wells (much of which is used for drinking water) and the effects of withdrawals on groundwater-dependent ecosystems have led to concerns over groundwater availability on the island of Molokaʻi, Hawaiʻi. An improved understanding of the hydrologic effects of proposed groundwater withdrawals is needed to ensure effective managem
Authors
Delwyn S. Oki, John A. Engott, Kolja Rotzoll

Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams

Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014–2017, the United States Geological Survey measured 111
Authors
Paul M. Bradley, Celeste A. Journey, Daniel T. Button, Daren Carlisle, B. J. Huffman, Sharon L. Qi, Kristin M. Romanok, Peter C. Van Metre