Publications
Filter Total Items: 7429
The role of seismic and slow slip events in triggering the 2018 M7.1 Anchorage earthquake in the Southcentral Alaska subduction zone
The M 7.1 2018 Anchorage earthquake occurred in the bending part of the subducting North Pacific plate near the geometrical barrier formed by the underthrusting Yakutat terrane. We calculate the triggering potential related with stress redistribution from deformation sources including the M 9.2 1964 earthquake coseismic slip, postseismic deformation, slip from regional M > 5 earthquakes...
Authors
Margarita Segou, Thomas E. Parsons
Holocene relative sea-level change along the tectonically active Chilean coast
We present a comprehensive relative sea-level (RSL) database for north, central, and south-central Chile (18.5°S – 43.6°S) using a consistent, systematic, and internationally comparable approach. Despite its latitudinal extent, this coastline has received little rigorous or systematic attention and details of its RSL history remain largely unexplored. To address this knowledge gap, we re...
Authors
Ed Garrett, Daniel Melnick, Tina Dura, Marco Cisternas, Lisa Ely, Robert L. Wesson, Julius Jara-Munoz, Pippa L Whitehouse
Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California
Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including...
Authors
Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus
Subduction megathrust heterogeneity characterized from 3D seismic data
Megathrust roughness and structural complexity are thought to be controls on earthquake slip at subduction zones because they result in heterogeneity in shear strength and resolved stress. However, because active megathrust faults are difficult to observe, the causes and scales of complexity are largely unknown. Here we measured the in situ properties of the megathrust of the Middle...
Authors
James D. Kirkpatrick, Joel H. Edwards, Alessandro Verdecchia, Jared W. Kluesner, Rebecca M. Harrington, Eli Silver
Hydrologically induced deformation in Long Valley Caldera and adjacent Sierra Nevada
Vertical and horizontal components of GNSS displacements in the Long Valley Caldera and adjacent Sierra Nevada range show a clear correlation with hydrological trends at both multiyear and seasonal time scales. We observe a clear vertical and horizontal seasonal deformation pattern primarily attributable to the solid earth response to hydrological surface loading at large-to-regional...
Authors
Francesca Silverii, Emily K. Montgomery-Brown, Adrian Borsa, Andrew Barbour
Sea-level rise exponentially increases coastal flood frequency
Sea-level rise will radically redefine the coastline of the 21st century. For many coastal regions, projections of global sea-level rise by the year 2100 (e.g., 0.5–2 meters) are comparable in magnitude to today’s extreme but short-lived increases in water level due to storms. Thus, the 21st century will see significant changes to coastal flooding regimes (where present-day, extreme-but...
Authors
Mohsen Taherkhani, Sean Vitousek, Patrick L. Barnard, L Neil Frazer, Tiffany Anderson, Charles Fletcher
Science plan for improving three-dimensional seismic velocity models in the San Francisco Bay region, 2019–24
This five-year science plan outlines short-term and long-term goals for improving three-dimensional seismic velocity models in the greater San Francisco Bay region as well as how to foster a community effort in reaching those goals. The short-term goals focus on improving the current U.S. Geological Survey San Francisco Bay region geologic and seismic velocity model using existing data...
Authors
Brad T. Aagaard, Russell W. Graymer, Clifford H. Thurber, Arthur J. Rodgers, Taka'aki Taira, Rufus D. Catchings, Christine A. Goulet, Andreas Plesch
Disk-integrated thermal properties of Ceres measured at the millimeter wavelengths
We observed Ceres at three epochs in 2015 November and 2017 September and October with Atacama Large Millimeter/submillimeter Array (ALMA) 12 m array and in 2017 October with the ALMA Compact Array (ACA), all at ~265 GHz continuum (wavelengths of ~1.1 mm) to map the temperatures of Ceres over a full rotation at each epoch. We also used 2017 October ACA observations to search for HCN. The...
Authors
Jian-Yang Li, Arielle Moullet, Timothy N. Titus, Henry H. Hsieh, Mark V. Sykes
Methods for rapidly estimating velocity precision from GNSS time series in the presence of temporal correlation: A new method and comparison of existing methods
Time series of position estimates from Global Navigational Satellite System (GNSS) are used to measure the velocities of points on the surface of the Earth. Along with the velocity estimates, a measure of the precision is needed to assess the quality of the velocity measurement. Here, I evaluate rate uncertainties provided by four different methods that have been applied to geodetic time...
Authors
John Langbein
Genesis and evolution of ferromanganese crusts from the summit of Rio Grande Rise, southwest Atlantic Ocean
The Rio Grande Rise (RGR) is a large elevation in the Atlantic Ocean and known to host potential mineral resources of ferromanganese crusts (Fe–Mn), but no investigation into their general characteristics have been made in detail. Here, we investigate the chemical and mineralogical composition, growth rates and ages of initiation, and phosphatization of relatively shallow-water (650–825...
Authors
Mariana Benites, James R. Hein, Kira Mizell, Terrence Blackburn, Luigi Jovane
Practical limitations of Earthquake Early Warning
Earthquake Early Earning (EEW) entails detection of initial earthquake shaking and rapid estimation and notification to users prior to imminent, stronger shaking. EEW is coming to the U.S. West Coast. But what are the technical and social challenges to delivering actionable information on earthquake shaking before it arrives? Although there will be tangible benefits, there are also...
Authors
David J. Wald
USGS “Did You Feel It?” — Science and lessons from twenty years of citizen science-based macroseismology
The U.S. Geological Survey (USGS) “Did You Feel It?” (DYFI) system is an automatic method for rapidly collecting macroseismic intensity data from Internet users’ shaking and damage reports and for generating intensity maps immediately following felt earthquakes. DYFI has been in operation for nearly two decades (1999-2019) in the United States, and for nearly 15 years globally. During...
Authors
Vince Quitoriano, David J. Wald