Skip to main content
U.S. flag

An official website of the United States government

Rivers, Streams and Lakes

Climate change is resulting in shifts in temperature, precipitation, and seasonal streamflow regimes across North America, impacting water resources for plant, wildlife, and human communities. Learn more about what CASC scientists are doing to inform water resource and fisheries managers through the projects below.

Filter Total Items: 220

Impacts of Climate Change on Water Flows in the Red River Basin

The Red River Basin is a vital source of water in the South Central U.S., supporting ecosystems, drinking water, agriculture, tourism and recreation, and cultural ceremonies. Stretching from the High Plains of New Mexico eastward to the Mississippi River, the Red River Basin encompasses parts of five states – New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. Further, 74% of the jurisdictional
link

Impacts of Climate Change on Water Flows in the Red River Basin

The Red River Basin is a vital source of water in the South Central U.S., supporting ecosystems, drinking water, agriculture, tourism and recreation, and cultural ceremonies. Stretching from the High Plains of New Mexico eastward to the Mississippi River, the Red River Basin encompasses parts of five states – New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. Further, 74% of the jurisdictional
Learn More

Projecting Future Streamflow in the Colorado River Basin

The Colorado River is the dominant water source for the southwestern United States, crossing through seven states before reaching Mexico. The river supplies water to approximately 36 million people, irrigates nearly six million acres of farmland within and beyond the basin, and contributes an estimated 26 billion dollars each year to the region’s recreational economy. Yet the Colorado River’s wate
link

Projecting Future Streamflow in the Colorado River Basin

The Colorado River is the dominant water source for the southwestern United States, crossing through seven states before reaching Mexico. The river supplies water to approximately 36 million people, irrigates nearly six million acres of farmland within and beyond the basin, and contributes an estimated 26 billion dollars each year to the region’s recreational economy. Yet the Colorado River’s wate
Learn More

Projecting the Future of Headwater Streams to Inform Management Decisions

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of
link

Projecting the Future of Headwater Streams to Inform Management Decisions

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of
Learn More

The Effects of Drought on Rio Grande Cutthroat Trout: The Role of Stream Intermittency

Drought poses a major threat to New Mexico’s state fish, the Rio Grande cutthroat trout. This southernmost subspecies of cutthroat trout, found only in New Mexico and Colorado, has already been restricted to an estimated 12% of its former range. Now climate change, in the form of lower winter snowpack and reduced precipitation, challenges its long-term persistence. This trout tends to occupy small
link

The Effects of Drought on Rio Grande Cutthroat Trout: The Role of Stream Intermittency

Drought poses a major threat to New Mexico’s state fish, the Rio Grande cutthroat trout. This southernmost subspecies of cutthroat trout, found only in New Mexico and Colorado, has already been restricted to an estimated 12% of its former range. Now climate change, in the form of lower winter snowpack and reduced precipitation, challenges its long-term persistence. This trout tends to occupy small
Learn More

Understanding and Communicating the Role of Natural Climate Variability in a Changing World

Natural climate variability can obscure or enhance long-term trends in experienced weather due to climate change. This can happen temporarily on timescales of a season to several years to a decade or two. Natural variability is poorly described and attributed to specific causes, contributing to uncertainty and misunderstandings about the nature of climate change that stakeholders and resource mana
link

Understanding and Communicating the Role of Natural Climate Variability in a Changing World

Natural climate variability can obscure or enhance long-term trends in experienced weather due to climate change. This can happen temporarily on timescales of a season to several years to a decade or two. Natural variability is poorly described and attributed to specific causes, contributing to uncertainty and misunderstandings about the nature of climate change that stakeholders and resource mana
Learn More

Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years

This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate c
link

Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years

This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate c
Learn More

Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin

Currently, maintaining appropriate flows to support biological integrity is difficult for larger riverine ecosystems. Climate change, through increased temperature, reduced rainfall, and increased rainfall intensity, is expected to reduce water availability and exacerbate the maintenance of ecological flows in the Arkansas-Red River basin. Understanding the nexus among climate change effects on st
link

Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin

Currently, maintaining appropriate flows to support biological integrity is difficult for larger riverine ecosystems. Climate change, through increased temperature, reduced rainfall, and increased rainfall intensity, is expected to reduce water availability and exacerbate the maintenance of ecological flows in the Arkansas-Red River basin. Understanding the nexus among climate change effects on st
Learn More

Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions

To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data re
link

Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions

To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data re
Learn More

Climate Change and Peak Flows: Informing Managers About Future Impacts to Streamflow Dynamics and Aquatic Habitat

What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will the waters be cold and clear or warm and muddy? Will they have salmon or other species? These questions motivated our two-year study of climate warming effects on headwater streams draining the Cascade Mountains. Using a novel combination of snow, geohydrology, and sediment transport models
link

Climate Change and Peak Flows: Informing Managers About Future Impacts to Streamflow Dynamics and Aquatic Habitat

What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will the waters be cold and clear or warm and muddy? Will they have salmon or other species? These questions motivated our two-year study of climate warming effects on headwater streams draining the Cascade Mountains. Using a novel combination of snow, geohydrology, and sediment transport models
Learn More

Climate Change Vulnerability of the Pyramid Lake Paiute Tribe in the Southwest

Native Americans are one of the most vulnerable populations to climate change in the United States because of their reliance upon the natural environment for food, livelihood, and cultural traditions. In the Southwest, where the temperature and precipitation changes from climate change are expected to be particularly severe, tribal communities may be especially vulnerable. Through this project, re
link

Climate Change Vulnerability of the Pyramid Lake Paiute Tribe in the Southwest

Native Americans are one of the most vulnerable populations to climate change in the United States because of their reliance upon the natural environment for food, livelihood, and cultural traditions. In the Southwest, where the temperature and precipitation changes from climate change are expected to be particularly severe, tribal communities may be especially vulnerable. Through this project, re
Learn More

Evaluating the Use of Models for Projecting Future Water Flow in the Southeast

Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in
link

Evaluating the Use of Models for Projecting Future Water Flow in the Southeast

Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in
Learn More

Improving Groundwater Supply Forecasting in the Southwestern U.S.

Changing climate conditions have been identified as a major threat to the sustainability and availability of water resources in the Southwestern U.S. Long-term decreases in precipitation can lead to reductions in regional groundwater levels and loss of groundwater storage in aquifers for some communities. Reduced precipitation can also lead to lower water levels in streams and losses in the vegeta
link

Improving Groundwater Supply Forecasting in the Southwestern U.S.

Changing climate conditions have been identified as a major threat to the sustainability and availability of water resources in the Southwestern U.S. Long-term decreases in precipitation can lead to reductions in regional groundwater levels and loss of groundwater storage in aquifers for some communities. Reduced precipitation can also lead to lower water levels in streams and losses in the vegeta
Learn More