Skip to main content
U.S. flag

An official website of the United States government

Geological and Hydrological Process Effects

In addition to effects on plants and animals, wildfires can also have important effects on geological and hydrological processes in the years following burns. USGS scientists investigate how ash and particulate matter from fires can affect water resources and the organisms that inhabit them. They also help identify the probabilities of debris flows or large-scale erosional events after fires, and likewise conduct investigations to determine the factors that promote their occurence.

Filter Total Items: 21

USGS Data Collection: Real-Time Rain Gages for Post Conchas-Fire Flood-Early Warning System

The Las Conchas fire started on June 26, 2011, near the small community of Las Conchas in the Jemez Mountains of north-central New Mexico. When the fire was contained on August 3, 2011, it had burned 156,593 acres of mixed conifer, pinyon/juniper, and ponderosa forest. At the time, it was the largest wildfire in New Mexico history. Peak burn severity was extreme; over 60,000 acres of the total...
link

USGS Data Collection: Real-Time Rain Gages for Post Conchas-Fire Flood-Early Warning System

The Las Conchas fire started on June 26, 2011, near the small community of Las Conchas in the Jemez Mountains of north-central New Mexico. When the fire was contained on August 3, 2011, it had burned 156,593 acres of mixed conifer, pinyon/juniper, and ponderosa forest. At the time, it was the largest wildfire in New Mexico history. Peak burn severity was extreme; over 60,000 acres of the total...
Learn More

Changes in Watershed Hydrologic Response Time with Post-wildfire Changes in Vegetation and Surface Fuels Along a Severely-burned, High-desert Canyon, Bandelier National Monument, NM

Flash flooding can be a destructive and life-threatening response of watersheds to intense rainfall events, particularly in sparsely­ vegetated, or burned watersheds. Studies have been conducted to estimate the magnitude of hydrologic responses of burned watersheds to rainfall events, however the time that it takes a flood to travel through a burned watershed and reach a critical or populated area...
link

Changes in Watershed Hydrologic Response Time with Post-wildfire Changes in Vegetation and Surface Fuels Along a Severely-burned, High-desert Canyon, Bandelier National Monument, NM

Flash flooding can be a destructive and life-threatening response of watersheds to intense rainfall events, particularly in sparsely­ vegetated, or burned watersheds. Studies have been conducted to estimate the magnitude of hydrologic responses of burned watersheds to rainfall events, however the time that it takes a flood to travel through a burned watershed and reach a critical or populated area...
Learn More

Post-Wildfire Investigation: Analysis of Soil Properties Based on Burn Severity

The Las Conchas fire started on June 26, 2011, near the small community of Las Conchas in the Jemez Mountains of north-central New Mexico. When the fire was contained on August 3, 2011, it had burned 156,593 acres of mixed conifer, pinyon/juniper and ponderosa forest and at the time was the largest wildfire in New Mexico history. Peak burn severity was extreme; over 60,000 acres of the total...
link

Post-Wildfire Investigation: Analysis of Soil Properties Based on Burn Severity

The Las Conchas fire started on June 26, 2011, near the small community of Las Conchas in the Jemez Mountains of north-central New Mexico. When the fire was contained on August 3, 2011, it had burned 156,593 acres of mixed conifer, pinyon/juniper and ponderosa forest and at the time was the largest wildfire in New Mexico history. Peak burn severity was extreme; over 60,000 acres of the total...
Learn More

Prewildfire Assessments of Postwildfire Debris-Flow Hazards

Debris flows are high-density slurries of water, rock fragments, soil, and mud that can have enormous destructive power. Wildfire can drastically increase the probability of debris flows in landscapes that have otherwise been stable. In 2010, the USGS developed the Cannon model to estimate postwildfire debris-flow probabilities and volumes in burned areas. In 2013, with the help of U.S. Forest...
link

Prewildfire Assessments of Postwildfire Debris-Flow Hazards

Debris flows are high-density slurries of water, rock fragments, soil, and mud that can have enormous destructive power. Wildfire can drastically increase the probability of debris flows in landscapes that have otherwise been stable. In 2010, the USGS developed the Cannon model to estimate postwildfire debris-flow probabilities and volumes in burned areas. In 2013, with the help of U.S. Forest...
Learn More

Postwildfire Debris-Flow Hazards

Wildfire is a natural process in forest ecosystems, and occurs with varying frequencies and severities depending on landscape characteristics, climatic conditions, and the historical fire regime. Although attention often is focused on the potential damages from wildfire in the wildland-urban interface, wildfire also presents a threat to critical infrastructure including flood water conveyances and...
link

Postwildfire Debris-Flow Hazards

Wildfire is a natural process in forest ecosystems, and occurs with varying frequencies and severities depending on landscape characteristics, climatic conditions, and the historical fire regime. Although attention often is focused on the potential damages from wildfire in the wildland-urban interface, wildfire also presents a threat to critical infrastructure including flood water conveyances and...
Learn More

Changes to Watershed Vulnerability under Future Climates, Fire Regimes, and Population Pressures

The project aimed to use existing models and data to understand how wildfires (number, size, and location) and land-use change will affect watersheds, and therefore water supply, under current conditions and future climates (through 2050) in the western U.S. The projected changes in temperature and precipitation are expected to affect water supply in two major ways: 1) decreased water availability
link

Changes to Watershed Vulnerability under Future Climates, Fire Regimes, and Population Pressures

The project aimed to use existing models and data to understand how wildfires (number, size, and location) and land-use change will affect watersheds, and therefore water supply, under current conditions and future climates (through 2050) in the western U.S. The projected changes in temperature and precipitation are expected to affect water supply in two major ways: 1) decreased water availability
Learn More

Nome Creek Boreal, Fire and Permafrost Hydrology investigations

The Nome Creek Experimental Watershed (NCEW) has been the site of multiple studies focused on understanding hydrology, biogeochemistry, and ecosystem changes related to permafrost thaw and fire in the boreal forest. The boreal forest is the Earth’s largest terrestrial biome, and thus plays a major role in biogeochemical cycling, creation of habitat for wildlife, as well as wilderness and resources
link

Nome Creek Boreal, Fire and Permafrost Hydrology investigations

The Nome Creek Experimental Watershed (NCEW) has been the site of multiple studies focused on understanding hydrology, biogeochemistry, and ecosystem changes related to permafrost thaw and fire in the boreal forest. The boreal forest is the Earth’s largest terrestrial biome, and thus plays a major role in biogeochemical cycling, creation of habitat for wildlife, as well as wilderness and resources
Learn More

Bandelier National Monument Postwildfire Flood Support

In the summer of 2011, the Las Conchas Fire burned 156,593 acres in the Jemez Mountains in northern NM including the upper watersheds of Frijoles and Capulin Canyons in Bandelier National Monument. The drastic removal of vegetation in the upper watersheds of these popular tourist destinations left them susceptible to dangerous and record breaking floods. As long as the threat of large post...
link

Bandelier National Monument Postwildfire Flood Support

In the summer of 2011, the Las Conchas Fire burned 156,593 acres in the Jemez Mountains in northern NM including the upper watersheds of Frijoles and Capulin Canyons in Bandelier National Monument. The drastic removal of vegetation in the upper watersheds of these popular tourist destinations left them susceptible to dangerous and record breaking floods. As long as the threat of large post...
Learn More
link

USGS Post-Wildfire Hydrologic Monitoring in New Mexico

USGS Gages in New Mexico Wildfire Areas
Learn More