Ken Krauss, Ph.D. (Former Employee)
Science and Products
Filter Total Items: 19
Filter Total Items: 33
No Result Found
Filter Total Items: 191
Constraints on the adjustment of tidal marshes to accelerating sea level rise
Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that...
Authors
Neil Saintilan, Katya Kovalenko, Glenn Guntenspergen, Kerrylee Rogers, James F. Lynch, Donald R. Cahoon, Catherine E. Lovelock, Daniel A. Friess, Erica L. Ashe, Ken W. Krauss, Nicole Cormier, Tom Spencer, Janine B. Adams, Jacqueline L. Raw, Carles Ibanez, Francesco Scarton, Stijn Temmerman, Patrick Meire, Tom Maris, Karen M. Thorne, John Brazner, Gail L. Chmura, Tony Bowron, Vishmie Palepitiya Gamage, Kimberly Cressman, Charlie Endris, Christina Marconi, Pamela Marcum, Kari St. Laurent, William G. Reay, Kenneth B. Raposa, Jason A. Garwood, Nicole Kahn
Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we...
Authors
Hongqing Wang, Zhaohua Dai, Carl C. Trettin, Ken W. Krauss, Gregory Noe, Andrew J. Burton, Camille L. Stagg, Eric Ward
Processes and mechanisms of coastal woody-plant mortality
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2, and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global...
Authors
Nate G. McDowell, Marilyn C. Ball, Ben Bond-Lamberty, Matthew L. Kirwan, Ken W. Krauss, J. Patrick Megonigal, Maurizio Mencuccini, Nicholas D. Ward, Michael N Weintraub, Vanessa Bailey
Presence of the herbaceous marsh species Schoenoplectus americanus enhances surface elevation gain in transitional coastal wetland communities exposed to elevated CO2 and sediment deposition events
Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to ecological functions and services. While a growing body of research has characterized the landscape-scale...
Authors
Camille L. Stagg, Claudia Laurenzano, William Vervaeke, Ken W. Krauss, Karen L. McKee
Potential for carbon and nitrogen sequestration by restoring tidal connectivity and enhancing soil surface elevations in denuded and degraded south Florida mangrove ecosystems
Mangroves are tidally dependent wetlands that are influenced often by alterations in hydrology associated with coastal developments that impact their distribution, health, and function. Alteration in frequency, depth, duration, and seasonality of tidal inundation can lead to changes in forest condition, although these stress-adapted ecosystems may persist for many years before succumbing...
Authors
Nicole Cormier, Ken W. Krauss, Amanda W.J. Demopoulos, Brita J. Jessen, Jennifer P. McClain-Counts, Andrew From, Laura L. Flynn
Preface to book: Wetland carbon and environmental management
The idea for this book, including its organization and contents, has its origin in the latest environmental and climate policy requirements in the United States, as well as science advances. In 2007, the U.S. Congress passed the Energy Independence and Security Act (EISA), from which Section 712 required U.S. Federal agencies to provide a better understanding of carbon and greenhouse gas...
Authors
Ken W. Krauss, Zhiliang Zhu, Camille L. Stagg
Modeling the impacts of hydrology and management on carbon balance at the Great Dismal Swamp, Virginia and North Carolina, USA
The impact of drainage on the stability of peatland carbon sinks is well known; however, much less is understood regarding the way active management of the water-table affects carbon balance. In this study, we determined the carbon balance in the Great Dismal Swamp, a large, forested peatland in the southeastern USA, which has been drained for over two hundred years and is now being...
Authors
Rachel Sleeter
Summary of wetland carbon and environmental management: Path forward
Wetlands around the world are under pressure from both anthropogenic sources such as land-use change and accelerating climate change (Erwin, 2009; Moomaw et al., 2018). Storage of carbon resources is a key ecosystem service of wetlands and offer natural solutions to climate change mitigation; policies and management actions could determine the fate of these resources and their...
Authors
Zhiliang Zhu, Ken W. Krauss, Camille L. Stagg, Eric Ward, Victoria Woltz
Carbon fluxes and potential soil accumulation within Greater Everglades cypress and pine forested wetlands
In forested wetlands, accumulation of organic matter in soil is partly governed by carbon fluxes where photosynthesis, respiration, lateral advection of waterborne carbon, fire-derived carbon emissions, and methanogenesis are balanced by changes in stored carbon. Stored carbon can eventually accumulate as soil over time if net primary productivity exceeds biomass decomposition. For this...
Authors
W. Barclay Shoemaker, Frank E. Anderson, Andre Daniels, Matt Sirianni
Carbon flux, storage, and wildlife co-benefits in a restoring estuary
Tidal marsh restorations may result in transitional mudflat habitats depending on hydrological and geomorphological conditions. Compared to tidal marsh, mudflats are thought to have limited value for carbon sequestration, carbon storage, and foraging benefits for salmon. We evaluated greenhouse gas exchange, sediment carbon storage, and invertebrate production at restoration and...
Authors
Isa Woo PR, Melanie J. Davis, Susan E.W. De La Cruz, Lisamarie Windham-Myers, Judith Z. Drexler, Kristin B. Byrd, Ellen Stuart-Haëntjens, Frank E. Anderson, Brian Bergamaschi, Glynnis Nakai, Christopher S. Ellings, Sayre Hodgson
The importance of wetland carbon dynamics to society: Insight from the Second State of the Carbon Cycle Science Report
The Second State of the Carbon Cycle Report (SOCCR2) culminated in 19 chapters that spanned all North American sectors – from Energy Systems to Agriculture and Land Use – known to be important for understanding carbon (C) cycling and accounting. Wetlands, both inland and coastal, were found to be significant components of C fluxes along the terrestrial to aquatic hydrologic continuum. In...
Authors
Randall K. Kolka, Carl C. Trettin, Lisamarie Windham-Myers
Non-USGS Publications**
Kumara, M.P., L.P. Jayatissa, K.W. Krauss, D.H. Phillips, & M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545-553.
Huxham, M., M. Kumara, L. Jayatissa, K.W. Krauss, J. Kairo, J. Langat, M. Mencuccini, M. Skov & B. Kirui. 2010. Intra and inter-specific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London B 365: 2127-2135.
Krauss, K.W. 2009. Mangrove energetics. Ecology 90: 3588-3589. [book review]
Krauss, K.W., C.E. Lovelock, K.L. McKee, L. López-Hoffman, S.M.L. Ewe & W.P. Sousa. 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105-127.
Conner, W.H., T.W. Doyle & K.W. Krauss, Eds., 2007. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Krauss, K.W., J.L. Chambers & D. Creech. 2007. Selection for salt tolerance in tidal freshwater swamp species: advances using baldcypress as a model for restoration. Pages 385-410 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner W.H., K.W. Krauss & T.W. Doyle. 2007. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina. Pages 223-253 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner, W.H., C.T. Hackney, K.W. Krauss & J.W. Day, Jr. 2007. Tidal freshwater forested wetlands: future research needs and an overview of restoration. Pages 461-485 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Gardiner, E.S. & K.W. Krauss. 2001. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology 21: 1103-1111.
Krauss, K.W., R.A. Goyer, J.A. Allen & J.L. Chambers. 2000. Tree shelters effective in coastal swamp restoration (Louisiana). Ecological Restoration18: 200-201.
Allen, J.A., K.W. Krauss, N.C. Duke, O. Björkman, D.R. Herbst & C. Shih. 2000. Bruguiera species in Hawai’i: systematic considerations and ecological implications. Pacific Science 54: 331-343.
Doyle, T.W. & K.W. Krauss. 1999. The sands and sambars of St. Vincent Island. Florida Wildlife 53: 22-25.
Krauss, K.W., J.L. Chambers & J.A. Allen. 1998. Salinity effects and differential germination of several half-sib families of baldcypress from different seed sources. New Forests 15: 53-68.
Allen, J.A., W.H. Conner, R.A. Goyer, J.L. Chambers & K.W. Krauss. 1998. Chapter 4: Freshwater forested wetlands and global climate change. Pages 33-44 in G.R. Guntenspergen and B.A Vairin (eds.), Vulnerability of coastal wetlands in the Southeastern United States: climate change research results, 1992-97. U.S. Geological Survey, Biological Resources Division Biological Science Report USGS/BRD/BSR-1998-0002. 101 p.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
Filter Total Items: 19
Filter Total Items: 33
No Result Found
Filter Total Items: 191
Constraints on the adjustment of tidal marshes to accelerating sea level rise
Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that...
Authors
Neil Saintilan, Katya Kovalenko, Glenn Guntenspergen, Kerrylee Rogers, James F. Lynch, Donald R. Cahoon, Catherine E. Lovelock, Daniel A. Friess, Erica L. Ashe, Ken W. Krauss, Nicole Cormier, Tom Spencer, Janine B. Adams, Jacqueline L. Raw, Carles Ibanez, Francesco Scarton, Stijn Temmerman, Patrick Meire, Tom Maris, Karen M. Thorne, John Brazner, Gail L. Chmura, Tony Bowron, Vishmie Palepitiya Gamage, Kimberly Cressman, Charlie Endris, Christina Marconi, Pamela Marcum, Kari St. Laurent, William G. Reay, Kenneth B. Raposa, Jason A. Garwood, Nicole Kahn
Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we...
Authors
Hongqing Wang, Zhaohua Dai, Carl C. Trettin, Ken W. Krauss, Gregory Noe, Andrew J. Burton, Camille L. Stagg, Eric Ward
Processes and mechanisms of coastal woody-plant mortality
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2, and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global...
Authors
Nate G. McDowell, Marilyn C. Ball, Ben Bond-Lamberty, Matthew L. Kirwan, Ken W. Krauss, J. Patrick Megonigal, Maurizio Mencuccini, Nicholas D. Ward, Michael N Weintraub, Vanessa Bailey
Presence of the herbaceous marsh species Schoenoplectus americanus enhances surface elevation gain in transitional coastal wetland communities exposed to elevated CO2 and sediment deposition events
Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to ecological functions and services. While a growing body of research has characterized the landscape-scale...
Authors
Camille L. Stagg, Claudia Laurenzano, William Vervaeke, Ken W. Krauss, Karen L. McKee
Potential for carbon and nitrogen sequestration by restoring tidal connectivity and enhancing soil surface elevations in denuded and degraded south Florida mangrove ecosystems
Mangroves are tidally dependent wetlands that are influenced often by alterations in hydrology associated with coastal developments that impact their distribution, health, and function. Alteration in frequency, depth, duration, and seasonality of tidal inundation can lead to changes in forest condition, although these stress-adapted ecosystems may persist for many years before succumbing...
Authors
Nicole Cormier, Ken W. Krauss, Amanda W.J. Demopoulos, Brita J. Jessen, Jennifer P. McClain-Counts, Andrew From, Laura L. Flynn
Preface to book: Wetland carbon and environmental management
The idea for this book, including its organization and contents, has its origin in the latest environmental and climate policy requirements in the United States, as well as science advances. In 2007, the U.S. Congress passed the Energy Independence and Security Act (EISA), from which Section 712 required U.S. Federal agencies to provide a better understanding of carbon and greenhouse gas...
Authors
Ken W. Krauss, Zhiliang Zhu, Camille L. Stagg
Modeling the impacts of hydrology and management on carbon balance at the Great Dismal Swamp, Virginia and North Carolina, USA
The impact of drainage on the stability of peatland carbon sinks is well known; however, much less is understood regarding the way active management of the water-table affects carbon balance. In this study, we determined the carbon balance in the Great Dismal Swamp, a large, forested peatland in the southeastern USA, which has been drained for over two hundred years and is now being...
Authors
Rachel Sleeter
Summary of wetland carbon and environmental management: Path forward
Wetlands around the world are under pressure from both anthropogenic sources such as land-use change and accelerating climate change (Erwin, 2009; Moomaw et al., 2018). Storage of carbon resources is a key ecosystem service of wetlands and offer natural solutions to climate change mitigation; policies and management actions could determine the fate of these resources and their...
Authors
Zhiliang Zhu, Ken W. Krauss, Camille L. Stagg, Eric Ward, Victoria Woltz
Carbon fluxes and potential soil accumulation within Greater Everglades cypress and pine forested wetlands
In forested wetlands, accumulation of organic matter in soil is partly governed by carbon fluxes where photosynthesis, respiration, lateral advection of waterborne carbon, fire-derived carbon emissions, and methanogenesis are balanced by changes in stored carbon. Stored carbon can eventually accumulate as soil over time if net primary productivity exceeds biomass decomposition. For this...
Authors
W. Barclay Shoemaker, Frank E. Anderson, Andre Daniels, Matt Sirianni
Carbon flux, storage, and wildlife co-benefits in a restoring estuary
Tidal marsh restorations may result in transitional mudflat habitats depending on hydrological and geomorphological conditions. Compared to tidal marsh, mudflats are thought to have limited value for carbon sequestration, carbon storage, and foraging benefits for salmon. We evaluated greenhouse gas exchange, sediment carbon storage, and invertebrate production at restoration and...
Authors
Isa Woo PR, Melanie J. Davis, Susan E.W. De La Cruz, Lisamarie Windham-Myers, Judith Z. Drexler, Kristin B. Byrd, Ellen Stuart-Haëntjens, Frank E. Anderson, Brian Bergamaschi, Glynnis Nakai, Christopher S. Ellings, Sayre Hodgson
The importance of wetland carbon dynamics to society: Insight from the Second State of the Carbon Cycle Science Report
The Second State of the Carbon Cycle Report (SOCCR2) culminated in 19 chapters that spanned all North American sectors – from Energy Systems to Agriculture and Land Use – known to be important for understanding carbon (C) cycling and accounting. Wetlands, both inland and coastal, were found to be significant components of C fluxes along the terrestrial to aquatic hydrologic continuum. In...
Authors
Randall K. Kolka, Carl C. Trettin, Lisamarie Windham-Myers
Non-USGS Publications**
Kumara, M.P., L.P. Jayatissa, K.W. Krauss, D.H. Phillips, & M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545-553.
Huxham, M., M. Kumara, L. Jayatissa, K.W. Krauss, J. Kairo, J. Langat, M. Mencuccini, M. Skov & B. Kirui. 2010. Intra and inter-specific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London B 365: 2127-2135.
Krauss, K.W. 2009. Mangrove energetics. Ecology 90: 3588-3589. [book review]
Krauss, K.W., C.E. Lovelock, K.L. McKee, L. López-Hoffman, S.M.L. Ewe & W.P. Sousa. 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105-127.
Conner, W.H., T.W. Doyle & K.W. Krauss, Eds., 2007. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Krauss, K.W., J.L. Chambers & D. Creech. 2007. Selection for salt tolerance in tidal freshwater swamp species: advances using baldcypress as a model for restoration. Pages 385-410 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner W.H., K.W. Krauss & T.W. Doyle. 2007. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina. Pages 223-253 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner, W.H., C.T. Hackney, K.W. Krauss & J.W. Day, Jr. 2007. Tidal freshwater forested wetlands: future research needs and an overview of restoration. Pages 461-485 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Gardiner, E.S. & K.W. Krauss. 2001. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology 21: 1103-1111.
Krauss, K.W., R.A. Goyer, J.A. Allen & J.L. Chambers. 2000. Tree shelters effective in coastal swamp restoration (Louisiana). Ecological Restoration18: 200-201.
Allen, J.A., K.W. Krauss, N.C. Duke, O. Björkman, D.R. Herbst & C. Shih. 2000. Bruguiera species in Hawai’i: systematic considerations and ecological implications. Pacific Science 54: 331-343.
Doyle, T.W. & K.W. Krauss. 1999. The sands and sambars of St. Vincent Island. Florida Wildlife 53: 22-25.
Krauss, K.W., J.L. Chambers & J.A. Allen. 1998. Salinity effects and differential germination of several half-sib families of baldcypress from different seed sources. New Forests 15: 53-68.
Allen, J.A., W.H. Conner, R.A. Goyer, J.L. Chambers & K.W. Krauss. 1998. Chapter 4: Freshwater forested wetlands and global climate change. Pages 33-44 in G.R. Guntenspergen and B.A Vairin (eds.), Vulnerability of coastal wetlands in the Southeastern United States: climate change research results, 1992-97. U.S. Geological Survey, Biological Resources Division Biological Science Report USGS/BRD/BSR-1998-0002. 101 p.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.