Publications
New York Water Science Center publications
►To fine-tune a search for USGS publications, try the USGS Publications Warehouse.
Filter Total Items: 694
Cyanobacteria, cyanotoxin synthetase gene, and cyanotoxin occurrence among selected large river sites of the conterminous United States, 2017–18
The U.S. Geological Survey measured cyanobacteria, cyanotoxin synthetase genes, and cyanotoxins at 11 river sites throughout the conterminous United States in a multiyear pilot study during 2017–19 through the National Water Quality Assessment Project to better understand the occurrence of cyanobacteria and cyanotoxins in large inland and coastal rivers. This report focuses on the first 2 years of
Authors
Robert E. Zuellig, Jennifer L. Graham, Erin A. Stelzer, Keith A. Loftin, Barry H. Rosen
Nitrogen in the Chesapeake Bay watershed—A century of change, 1950–2050
ForewordSustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term e
Authors
John W. Clune, Paul D. Capel, Matthew P. Miller, Douglas A. Burns, Andrew J. Sekellick, Peter R. Claggett, Richard H. Coupe, Rosemary M. Fanelli, Ana Maria Garcia, Jeff P. Raffensperger, Silvia Terziotti, Gopal Bhatt, Joel D. Blomquist, Kristina G. Hopkins, Jennifer L. Keisman, Lewis C. Linker, Gary W. Shenk, Richard A. Smith, Alexander M. Soroka, James S. Webber, David M. Wolock, Qian Zhang
Geohydrologic and water-quality characterization of a fractured-bedrock test hole in an area of Marcellus Shale gas development, Sullivan County, Pennsylvania
The stratigraphy, water-bearing zones, and quality of groundwater were characterized in a 1,400-ft-deep test hole drilled during 2013 in fractured bedrock in Sullivan County, Pa., by collection and analysis of measurements made during drilling, geophysical logs, and depth-specific hydraulic tests and water samples. The multidisciplinary characterization of the test hole was a cooperative effort be
Authors
Dennis W. Risser, John H. Williams, Aaron D. Bierly
Predicting regional fluoride concentrations at public and domestic supply depths in basin-fill aquifers of the western United States using a random forest model
A random forest regression (RFR) model was applied to over 12,000 wells with measured fluoride (F) concentrations in untreated groundwater to predict F concentrations at depths used for domestic and public supply in basin-fill aquifers of the western United States. The model relied on twenty-two regional-scale environmental and surficial predictor variables selected to represent factors known to c
Authors
Celia Z Rosecrans, Kenneth Belitz, Katherine Marie Ransom, Paul E. Stackelberg, Peter B. McMahon
Delineation of areas contributing groundwater and travel times to receiving waters in Kings, Queens, Nassau, and Suffolk Counties, New York
To assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York, the U.S. Geological Survey and New York State Department of Environmental Conservation initiated a program to delineate areas contributing groundwater to coastal water bodies by assembling a comprehensive dataset of areas contributing groundwater,
Authors
Paul E. Misut, Nicole A. Casamassina, Donald A. Walter
Technical note—Relative variability of selected turbidity standards and sensors in use by the U.S. Geological Survey
The challenges associated with field measurements of turbidity are well known and result primarily from differences in reported values that depend on instrument design and the resulting need for reporting units that are specific to those designs. A critical challenge for making comparable turbidity measurements is the selection and use of appropriate turbidity standards for sensor calibration. The
Authors
Guy M. Foster, Lindsey R. King, John D. Jastram, John K. Joiner, Brian A. Pellerin, Jennifer L. Graham, Thomas J. Williams
Managing water resources on Long Island, New York, with integrated, multidisciplinary science
Nutrients, harmful algal blooms, and synthetic chemicals like per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane threaten Long Island’s water resources by affecting the quality of drinking water and ecologically sensitive habitats that support the diverse wildlife throughout the island. Understanding the occurrence, fate, and transport of these potentially harmful chemicals is critical to
Authors
Robert F. Breault, John P. Masterson, Christopher Schubert, Liv M. Herdman
Methods for estimating regional skewness of annual peak flows in parts of eastern New York and Pennsylvania, based on data through water year 2013
Bulletin 17C (B17C) recommends fitting the log-Pearson Type III (LP−III) distribution to a series of annual peak flows at a streamgage by using the method of moments. The third moment, the skewness coefficient (or skew), is important because the magnitudes of annual exceedance probability (AEP) flows estimated by using the LP–III distribution are affected by the skew; interest is focused on the ri
Authors
Andrea G. Veilleux, Daniel M. Wagner
The Biscuit Brook and Neversink Reservoir Watersheds: Long-term investigations of stream chemistry, soil chemistry, and aquatic ecology in the Catskill Mountains, New York, USA, 1983 to 2020
This data note describes the Biscuit Brook and Neversink Reservoir watershed Long-Term Monitoring Data that includes: 1) stream discharge, (1983 – 2020 for Biscuit Brook and 1937 – 2020 for the Neversink Reservoir watershed), 2) stream water chemistry, 1983-2020, at 4 stations, 3) fish survey data from 16 locations in the watershed 1990-2019, 4) soil chemistry data from 2 headwater sub-watersheds,
Authors
Peter S. Murdoch, Douglas A. Burns, Michael McHale, Jason Siemion, Barry P. Baldigo, Gregory B. Lawrence, Scott D. George, Michael R. Antidormi, Donald B. Bonville
Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections
Land use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long-term (1971–2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971–2016), and upstream catchment land use (global Clumond
Authors
Karan Kakouei, B.M. Kraemer, O. Anneville, L. Carvalho, H. Feuchtmayr, Jennifer L. Graham, S. Higgins, F. Pomati, L.G. Rudstam, J.D. Stockwell, S.J. Thackeray, M. Vanni, R. Adrian
Risk-based wellhead protection decision support: A repeatable workflow approach
Environmental water management often benefits from a risk-based approach where information on the area of interest is characterized, assembled, and incorporated into a decision model considering uncertainty. This includes prior information from literature, field measurements, professional interpretation, and data assimilation resulting in a decision tool with a posterior uncertainty assessment acc
Authors
Michael N. Fienen, Nicholas Corson-Dosch, Jeremy T. White, Andrew T. Leaf, Randall J. Hunt
Geohydrology and water quality of the stratified-drift aquifers in West Branch Cayuga Inlet and Fish Kill Valleys, Newfield, Tompkins County, New York
From 2011 to 2016, the U.S. Geological Survey, in cooperation with the Town of Newfield and the Tompkins County Planning Department, performed a study of the stratified-drift aquifers in the West Branch Cayuga Inlet and Fish Kill Valleys in Newfield, Tompkins County, New York. Both confined and unconfined aquifers were identified, mostly in the valleys. The confined aquifer consists of a discontin
Authors
Benjamin N. Fisher, Paul M. Heisig, William M. Kappel