Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2585

Forecasting the long-term spatial distribution of earthquakes for the 2023 US National Seismic Hazard Model using gridded seismicity

Probabilistic seismic hazard analyses such as the U.S. National Seismic Hazard Model (NSHM) typically rely on declustering and spatially smoothing an earthquake catalog to estimate a long‐term time‐independent (background) seismicity rate to forecast future seismicity. In support of the U.S. Geological Survey’s (USGS) 2023 update to the NSHM, we update the methods used to develop this background o
Authors
Andrea L. Llenos, Andrew J. Michael, Allison Shumway, Justin Rubinstein, Kirstie Lafon Haynie, Morgan P. Moschetti, Jason M. Altekruse, Kevin R. Milner

Empirical ground-motion basin response in the California Great Valley, Reno, Nevada, and Portland, Oregon

We assess how well the Next-Generation Attenuation-West 2 (NGA-West2) ground-motion models (GMMs), which are used in the US Geological Survey’s (USGS) National Seismic Hazard Model (NSHM) for crustal faults in the western United States, predict the observed basin response in the Great Valley of California, the Reno basin in Nevada, and Portland and Tualatin basins in Oregon. These GMMs rely on sit
Authors
Sean Kamran Ahdi, Brad T. Aagaard, Morgan P. Moschetti, Grace Alexandra Parker, Oliver S. Boyd, William J. Stephenson

Apparent non-double-couple components as artifacts of moment tensor inversion

Compilations of earthquake moment tensors from global and regional catalogs find pervasive non-double-couple (NDC) components with a mean deviation from a double-couple (DC) source of around 20%. Their distributions vary only slightly with magnitude, faulting mechanism, or geologic environments. This consistency suggests that for most earthquakes, especially smaller ones whose rupture processes ar
Authors
Boris Rösler, Seth Stein, Adam T. Ringler, Jiří Vackár

Preliminary implications of viscoelastic ray theory for anelastic seismic tomography models

The recent developments in general viscoelastic ray theory provide a rigorous mathematical framework for anelastic seismic tomography. They provide closed‐form solutions of forward ray‐tracing and simple inverse problems for anelastic horizontal and spherical layered media with material gradients. They provide ray‐tracing computation algorithms valid for all angles of incidence that account for ch
Authors
Roger D. Borcherdt

Inbuilt age, residence time, and inherited age from radiocarbon dates of modern fires and late Holocene deposits, Western Transverse Ranges, California

Radiocarbon dates of sedimentary deposits include the elapsed time between formation of the organic material and deposition at the sample site, known as the inherited age. Long inherited ages reduce the accuracy of estimates of the timing of depositional events used to infer paleoclimate change, fire histories, and paleoearthquake timing. An inherited age distribution combines the inbuilt age dis
Authors
Katherine Scharer, Devin McPhillips, Jenifer Amy Leidelmeijer, Matthew Kirby

Performance-based earthquake early warning for tall buildings

The ShakeAlert Earthquake Early Warning (EEW) system aims to issue an advance warning to residents on the West Coast of the United States seconds before the ground shaking arrives, if the expected ground shaking exceeds a certain threshold. However, residents in tall buildings may experience much greater motion due to the dynamic response of the buildings. Therefore, there is an ongoing effort to
Authors
S. Farid Ghahari, Khachik Sargsyan, Grace Alexandra Parker, Dan Swensen, Mehmet Çelebi, Hamid Haddadi, Ertugrul Taciroglu

Noise constraints on global body‐wave measurement thresholds

Intermediate sized earthquakes (≈M4–6.5) are often measured using the teleseismic body‐wave magnitude (⁠𝑚b⁠). 𝑚b measurements are especially critical at the lower end of this range when teleseismic waveform modeling techniques (i.e., moment tensor analysis) are difficult. The U.S. Geological Survey National Earthquake Information Center (NEIC) determines the location and magnitude of all M 5 and g
Authors
Adam T. Ringler, David C. Wilson, Paul S. Earle, William L. Yeck, David B. Mason, Justin T. Wilgus

Summary of Creepmeter Data from 1980 to 2020—Measurements Spanning the Hayward, Calaveras, and San Andreas Faults in Northern and Central California

This report is an update to the presentation by Schulz (1989) introducing potential users to the creepmeter data collected between the publication of Schulz’s report and mid-2020. The creepmeter network monitors aseismic, surface slip at various locations on the Hayward, Calaveras, and San Andreas Faults in northern and central California. There are different designs of creepmeters and these are b
Authors
John Langbein, Roger G. Bilham, Hollice A. Snyder, Todd Ericksen

Distinct yet adjacent earthquake sequences near the Mendocino Triple Junction: 20 December 2021 Mw 6.1 and 6.0 Petrolia, and 20 December 2022 Mw 6.4 Ferndale

Two earthquake sequences occurred a year apart at the Mendocino Triple Junction in northern California: first the 20 December 2021 �w 6.1 and 6.0 Petrolia sequence, then the 20 December 2022 �w 6.4 Ferndale sequence. To delineate active faults and understand the relationship between these sequences, we applied an automated deep‐learning workflow to create enhanced and relocated earthquake catalogs
Authors
Clara Yoon, David R. Shelly

Data-driven adjustments for combined use of NGA-East hard-rock ground motion and site amplification models

Model development in the Next Generation Attenuation-East (NGA-East) project included two components developed concurrently and independently: (1) earthquake ground-motion models (GMMs) that predict the median and aleatory variability of various intensity measures conditioned on magnitude and distance, derived for a reference hard-rock site condition with an average shear-wave velocity in the uppe
Authors
Maria E. Ramos-Sepulveda, Jonathan P. Stewart, Grace Alexandra Parker, Morgan P. Moschetti, Eric M. Thompson, Scott J. Brandenberg, Youssef M A Hashash, Ellen Rathje

The influence of anthropogenic regulation and evaporite dissolution on earthquake-triggered ground failure

Remote sensing observations of Searles Lake following the 2019 moment magnitude 7.1 Ridgecrest, California, earthquake reveal an area where surface ejecta is arranged in a repeating hexagonal pattern that is collocated with a solution-mining operation. By analyzing geologic and geotechnical data, here we show that the hexagonal surface ejecta is likely not a result of liquefaction. Instead, we pro
Authors
Paula Madeline Burgi, Eric M. Thompson, Kate E. Allstadt, Kyle Dennis Murray, Henry (Ben) Mason, Sean Kamran Ahdi, Devin Katzenstein

Background seismic noise levels among the Caribbean network and the role of station proximity to coastline

The amplitude and frequency content of background seismic noise is highly variable with geographic location. Understanding the characteristics and behavior of background seismic noise as a function of location can inform approaches to improve network performance and in turn increase earthquake detection capabilities. Here, we calculate power spectral density estimates in one‐hour windows for over
Authors
Justin T. Wilgus, Adam T. Ringler, Brandon Schmandt, David C. Wilson, Robert E. Anthony