Space weather can have important consequences for our lives, such as interference with radio communication, GPS systems, electric power grids, the operation and orientation of satellites, oil and gas drilling, and even air travel as high altitude pilots and astronauts can be subjected to enhanced levels of radiation.
How does the Earth's core generate a magnetic field?
The Earth's outer core is in a state of turbulent convection as the result of radioactive heating and chemical differentiation. This sets up a process that is a bit like a naturally occurring electrical generator, where the convective kinetic energy is converted to electrical and magnetic energy. Basically, the motion of the electrically conducting iron in the presence of the Earth's magnetic field induces electric currents. Those electric currents generate their own magnetic field, and as the result of this internal feedback, the process is self-sustaining so long as there is an energy source sufficient to maintain convection.
Learn more:
Related
Why measure the magnetic field at the Earth's surface? Wouldn't satellites be better suited for space-weather studies?
Satellites and ground-based magnetometers are both important for making measurements of the Earth’s magnetic field. They are not redundant but are instead complementary: Satellites provide good geographical coverage for data collection. Ground-based magnetometers are much less expensive and much easier to install than satellites. An array of magnetometers provides coverage from numerous locations...
What are the hazards of magnetic storms?
Our technology based infrastructure can be adversely affected by rapid magnetic field variations. This is especially true during “magnetic storms." Because the ionosphere is heated and distorted during storms, long range radio communication that relies on sub-ionospheric reflection can be difficult or impossible and global-positioning system (GPS) communications can be degraded. Ionospheric...
What is a magnetic storm?
A magnetic storm is a period of rapid magnetic field variation. It can last from hours to days. Magnetic storms have two basic causes: The Sun sometimes emits a strong surge of solar wind called a coronal mass ejection. This gust of solar wind disturbs the outer part of the Earth's magnetic field, which undergoes a complex oscillation. This generates associated electric currents in the near-Earth...
Does the Earth's magnetic field affect human health?
The Earth's magnetic field does not directly affect human health. Humans evolved to live on this planet. High altitude pilots and astronauts can experience higher levels of radiation during magnetic storms, but the hazard is due to the radiation, not the magnetic field itself. Geomagnetism can also impact the electrically based technology that we rely on, but it does not impact people themselves...
What is declination?
At most places on the Earth's surface, the compass doesn't point exactly toward geographic north. The deviation of the compass from true north is an angle called "declination" (or "magnetic declination"). It is a quantity that has been a nuisance to navigators for centuries, especially since it varies with both geographic location and time . It might surprise you to know that at very high...
Is the Earth a magnet?
In a sense, yes. The Earth is composed of layers having different chemical compositions and different physical properties. The crust of the Earth has some permanent magnetization, and the Earth’s core generates its own magnetic field, sustaining the main part of the field we measure at the surface. So we could say that the Earth is, therefore, a "magnet." But permanent magnetization cannot occur...
Are we about to have a magnetic reversal?
Almost certainly not. Since the invention of the magnetometer in the 1830s, the average intensity of the magnetic field at the Earth's surface has decreased by about ten percent. We know from paleomagnetic records that the intensity of the magnetic field decreases by as much as ninety percent at the Earth's surface during a reversal. But those same paleomagnetic records also show that the field...
Space weather can have important consequences for our lives, such as interference with radio communication, GPS systems, electric power grids, the operation and orientation of satellites, oil and gas drilling, and even air travel as high altitude pilots and astronauts can be subjected to enhanced levels of radiation.
USGS scientist Duane Champion explains the Earth's geomagnetic qualities and the potential for and possible consequences of a geomagnetic shift.
USGS scientist Duane Champion explains the Earth's geomagnetic qualities and the potential for and possible consequences of a geomagnetic shift.
The Role of Paleomagnetism in the Evolution of Plate Tectonic Theory Video Presentation
Presentation of the award-winning USGS video "Secrets in Stone" (35 minutes), introduced by Jack Hillhouse, Research Geophysicist, and followed by a tour of the USGS Paleomagnetics Laboratory
The Role of Paleomagnetism in the Evolution of Plate Tectonic Theory Video Presentation
Presentation of the award-winning USGS video "Secrets in Stone" (35 minutes), introduced by Jack Hillhouse, Research Geophysicist, and followed by a tour of the USGS Paleomagnetics Laboratory
Geomagnetism Program research plan, 2020–2024
The Boulder magnetic observatory
Monitoring the Earth's dynamic magnetic field
The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes
This dynamic earth: the story of plate tectonics
Geomagnetism applications
Related
Why measure the magnetic field at the Earth's surface? Wouldn't satellites be better suited for space-weather studies?
Satellites and ground-based magnetometers are both important for making measurements of the Earth’s magnetic field. They are not redundant but are instead complementary: Satellites provide good geographical coverage for data collection. Ground-based magnetometers are much less expensive and much easier to install than satellites. An array of magnetometers provides coverage from numerous locations...
What are the hazards of magnetic storms?
Our technology based infrastructure can be adversely affected by rapid magnetic field variations. This is especially true during “magnetic storms." Because the ionosphere is heated and distorted during storms, long range radio communication that relies on sub-ionospheric reflection can be difficult or impossible and global-positioning system (GPS) communications can be degraded. Ionospheric...
What is a magnetic storm?
A magnetic storm is a period of rapid magnetic field variation. It can last from hours to days. Magnetic storms have two basic causes: The Sun sometimes emits a strong surge of solar wind called a coronal mass ejection. This gust of solar wind disturbs the outer part of the Earth's magnetic field, which undergoes a complex oscillation. This generates associated electric currents in the near-Earth...
Does the Earth's magnetic field affect human health?
The Earth's magnetic field does not directly affect human health. Humans evolved to live on this planet. High altitude pilots and astronauts can experience higher levels of radiation during magnetic storms, but the hazard is due to the radiation, not the magnetic field itself. Geomagnetism can also impact the electrically based technology that we rely on, but it does not impact people themselves...
What is declination?
At most places on the Earth's surface, the compass doesn't point exactly toward geographic north. The deviation of the compass from true north is an angle called "declination" (or "magnetic declination"). It is a quantity that has been a nuisance to navigators for centuries, especially since it varies with both geographic location and time . It might surprise you to know that at very high...
Is the Earth a magnet?
In a sense, yes. The Earth is composed of layers having different chemical compositions and different physical properties. The crust of the Earth has some permanent magnetization, and the Earth’s core generates its own magnetic field, sustaining the main part of the field we measure at the surface. So we could say that the Earth is, therefore, a "magnet." But permanent magnetization cannot occur...
Are we about to have a magnetic reversal?
Almost certainly not. Since the invention of the magnetometer in the 1830s, the average intensity of the magnetic field at the Earth's surface has decreased by about ten percent. We know from paleomagnetic records that the intensity of the magnetic field decreases by as much as ninety percent at the Earth's surface during a reversal. But those same paleomagnetic records also show that the field...
Space weather can have important consequences for our lives, such as interference with radio communication, GPS systems, electric power grids, the operation and orientation of satellites, oil and gas drilling, and even air travel as high altitude pilots and astronauts can be subjected to enhanced levels of radiation.
Space weather can have important consequences for our lives, such as interference with radio communication, GPS systems, electric power grids, the operation and orientation of satellites, oil and gas drilling, and even air travel as high altitude pilots and astronauts can be subjected to enhanced levels of radiation.
USGS scientist Duane Champion explains the Earth's geomagnetic qualities and the potential for and possible consequences of a geomagnetic shift.
USGS scientist Duane Champion explains the Earth's geomagnetic qualities and the potential for and possible consequences of a geomagnetic shift.
The Role of Paleomagnetism in the Evolution of Plate Tectonic Theory Video Presentation
Presentation of the award-winning USGS video "Secrets in Stone" (35 minutes), introduced by Jack Hillhouse, Research Geophysicist, and followed by a tour of the USGS Paleomagnetics Laboratory
The Role of Paleomagnetism in the Evolution of Plate Tectonic Theory Video Presentation
Presentation of the award-winning USGS video "Secrets in Stone" (35 minutes), introduced by Jack Hillhouse, Research Geophysicist, and followed by a tour of the USGS Paleomagnetics Laboratory
Geomagnetism Program research plan, 2020–2024
The Boulder magnetic observatory
Monitoring the Earth's dynamic magnetic field
The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes