Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7220

Using a Bayesian network to understand the importance of coastal storms and undeveloped landscapes for the creation and maintenance of early successional habitat

Coastal storms have consequences for human lives and infrastructure but also create important early successional habitats for myriad species. For example, storm-induced overwash creates nesting habitat for shorebirds like piping plovers (Charadrius melodus). We examined how piping plover habitat extent and location changed on barrier islands in New York, New Jersey, and Virginia after Hurricane Sa
Authors
Sara L. Zeigler, Benjamin T. Gutierrez, Emily J. Sturdivant, Daniel H. Catlin, James D. Fraser, A. Hecht, Sarah M. Karpanty, Nathaniel G. Plant, E. Robert Thieler

Natural hazards and mineral commodity supply: Quantifying risk of earthquake disruption to South American copper supply

Mineral resources, and their mining and enrichment operations, are not equally distributed across Earth. The concentration of mineral supply in certain regions, owing to the geology or geography of the mineral resource, raises the level of risk related to supply disruption. Where mineral production coincides with areas prone to natural hazards, supply may be especially at risk. However, the level
Authors
Emily K. Schnebele, Kishor S. Jaiswal, Nicolas Luco, Nedal T. Nassar

Preliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence

The Ridgecrest Earthquake sequence included a foreshock event on July 4 2019 (M6.4) and a M7.1 mainshock event on July 5 2019. These events occurred in the Eastern California Shear Zone, near Indian Wells Valley, south of China Lake and west of Searles Valley. GEER has partnered with several organizations to collect perishable data and document the important impacts of these events, including the
Authors
Scott J Brandenberg, Pengfei Wang, Chukwuebuka C Nweke, Kenneth Hudson, Silvia Mazzoni, Yousef Bozorgnia, Kenneth W. Hudnut, Craig A. Davis, Sean K Ahdi, Farzin Zareian, Jawad Fayaz, Richard D Koehler, Colin Chupik, Ian Pierce, Alana Williams, Sinan Akciz, Martin B Hudson, Tadahiro Kishida, Benjamin A. Brooks, Ryan D. Gold, Daniel J. Ponti, Katherine Scharer, Devin McPhillips, Christopher DuRoss, Todd Ericksen, Janis Hernandez, Jay Patton, Brian Olson, Timothy E. Dawson, Jerome Treiman, Kelly Blake, Jeffrey Buchhuber, Chris L M Madugo, Joseph Sun, Andrea Donnellan, Greg Lyzenga, Erik Conway

Rapid inundation of the southern Florida coastline despite low relative sea-level rise rates during the late-Holocene

Sediment cores from Florida Bay, Everglades National Park were examined to determine ecosystem response to relative sea-level rise (RSLR) over the Holocene. High-resolution multiproxy analysis from four sites show freshwater wetlands transitioned to mangrove environments 4–3.6 ka, followed by estuarine environments 3.4–2.8 ka, during a period of enhanced climate variability. We calculate a RSLR ra
Authors
Miriam Jones, G. Lynn Wingard, Bethany Stackhouse, Katherine Keller, Debra A. Willard, Marci E. Marot, Bryan D. Landacre, Christopher E. Bernhardt

Seismic loss and damage in light-frame wood buildings from sequences of induced earthquakes

Activities related to oil and gas production, especially deep disposal of wastewater, have led to sequences of induced earthquakes in the central U.S. This study aims to quantify damage to and seismic losses for light-frame wood buildings when subjected to sequences of induced, small to moderate magnitude, events. To conduct this investigation, one and two-story multifamily wood frame buildings ar
Authors
Robert E Chase, Abbie B. Liel, Nicolas Luco, Bridger W Baird

Developing and testing physically based triggering thresholds for runoff‐generated debris flows

Runoff in steep channels is capable of transitioning into debris flows with hazardous implications for downstream communities and infrastructure, particularly in alpine landscapes with minimal vegetation and areas recently disturbed by wildfire. Here, we derive thresholds for the initiation of runoff‐generated debris flows based on critical values of dimensionless discharge and Shields stress. The
Authors
Hui Tang, Luke A. McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Joel B. Smith

Improved implementation of rupture location uncertainty in fault displacement hazard assessment

This short note proposes an improvement to the implementation of uncertainty associated with rupture location from future earthquakes in probabilistic fault displacement hazard analysis. Location uncertainty leads to nonzero primary fault displacement near a mapped fault. With the improved implementation of location uncertainty, estimated fault displacement hazard at a given site is affected stron
Authors
Rui Chen, Mark D. Petersen

Intensity and impact of the New York Railroad superstorm of May 1921

Analysis is made of low‐latitude ground‐based magnetometer data recording the magnetic superstorm of May 1921. By inference, the storm was driven by a series of interplanetary coronal mass ejections, one of which produced a maximum pressure on the magnetopause of ~64.5 nPa, sufficient to compress the subsolar magnetopause radius to ~5.3 Earth radii. Over the course of the storm, low‐latitude geoma
Authors
Jeffrey J. Love, Hisashi Hayakawa, Edward W. Cliver

Offshore shallow structure and sediment distribution, Point Sur to Point Arguello, central California

This publication consists of three map sheets that display shallow geologic structure, along with sediment distribution and thickness, for an about 225-km-long offshore section of the central California coast between Point Sur and Point Arguello. Each map sheet includes three maps, at scales of either 1:150,000 or 1:200,000, as well as a set of figures that contain representative high-resolution s
Authors
Samuel Y. Johnson, Stephen R. Hartwell, Janet T. Watt, Jeffrey W. Beeson, Peter Dartnell

Effects of infiltration characteristics on the spatial-temporal evolution of stability of an interstate highway embankment

Infiltration-induced landslides are among the most common natural disasters threatening modern civilization, but conventional methods for studying the triggering mechanisms and predicting the occurrence of these slides are limited by incomplete consideration of underlying physical processes and the lack of precision inherent in limit-equilibrium analyses. To address this problem the spatial-tempor
Authors
Eric Hinds, Ning Lu, Benjamin B. Mirus, Alexandra Wayllace

Heat flow in the Western Arctic Ocean (Amerasian Basin)

From 1963 to 1973 the U.S. Geological Survey (USGS) measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T-3). The resulting measurements, which are unevenly distributed on Alpha-Mendeleev Ridge (AMR) and in Canada and Nautilus basins, greatly expand available heat flow data for the Arctic Ocean. Average T-3 heat flow is ~54.7 ± 11.3 mW m-2, and
Authors
Carolyn D. Ruppel, A.H. Lachenbruch, Deborah Hutchinson, Robert Munroe, David Mosher

Report from the Ice and Climate Evolution Science Analysis group (ICE-SAG)

This document is the final report of the Ice and Climate Evolution Science Analysis Group (ICESAG) that was formed by the Mars Exploration Program Analysis Group (MEPAG) as part of its preparations for the upcoming NASA Planetary Science Decadal Survey for 2023 through 2032 (see §1). Through telecons, one face-to-face meeting, and discussions with experts in relevant topics, ICE-SAG has identified
Authors
Than Putzig, Serina Diniega, Colin M. Dundas, Timothy N. Titus