Skip to main content
U.S. flag

An official website of the United States government

Conference Papers

Browse almost 5,000 conference papers authored by our scientists and refine search by topic, location, year, and advanced search.

Filter Total Items: 5321

Satellite observations of surface deformation at the Coso Geothermal Field, California

Surface deformation time series and rates are identified at the Coso Geothermal Field (CGF) and surrounding areas by applying interferometric synthetic aperture radar (InSAR) to satellite scenes from Envisat (June 2004 ̶ October 2010) and Sentinel (November 2014 – April 2018). The measurements are done in the line of sight (LOS) to each satellite, within an area of size ~450 km2, at the location
Authors
Mariana Eneva, Andrew Barbour, David Adams, Vicky Hsiao, Kelly Blake, Giacomo Falorni, Roberto Locatelli

iCoast – Did the Coast Change?: Storm-impact model verification using citizen scientists

The USGS provides model predictions of severe storm impacts prior to landfall based on pre-storm morphology and predicted total water levels, including waves and surge. Presented in near real time on the USGS Coastal Change Hazard Portal, they provide coastal residents, scientists, and emergency managers valuable coastal response information. iCoast – Did the Coast Change?, an online tool for comp
Authors
Karen L. M. Morgan, Nathaniel G. Plant, Hilary F. Stockdon, Richard J. Snell

A 4000-year history of debris flows in north-central Washington State, U.S.A.: Preliminary results from trenching and surficial geologic mapping at the Pope Creek fan

Long-term records of the magnitude and frequency of debris flows on fans are rare, but such records provide critical information needed for debris-flow hazard and risk assessments. This study explores the history of debris flows on a fan with seasonally inhabited cabins at Pope Creek along the Entiat River about 48 km upstream from the town of Entiat, Washington. Motivation for this study was prov
Authors
Jeffrey A. Coe, Erin Bessette-Kirton, Stephen Slaughter, Francis K. Rengers, Trevor A. Contreras, Katherin A Michelson, Emily Taylor, Jason W. Kean, Kara Jacobacci, Molly A Hanson

Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs, Colorado, USA

We present a series of debris-flow events and use combined sensor and video data to explore how sediment concentration and triggering rainfall intensity affect the velocity and discharge of debris-flow surges generated by surface-water runoff. We analyze an initial data set of 49 surges from four debris-flow events recorded by a monitoring system at Chalk Cliffs, Colorado and compare measurements
Authors
Joel B. Smith, Jason W. Kean, Jeffrey A. Coe

An evaluation of debris-flow runout model accuracy and complexity in Montecito, CA: Towards a framework for regional inundation-hazard forecasting

Numerous debris-flow inundation models have been applied retroactively to noteworthy events around the world. While such studies can be useful in identifying controlling factors, calibrating model parameters, and assessing future hazards in specific study areas, model parameters tailored to individual events can be difficult to apply regionally. The advancement of debris-flow modeling applications
Authors
Erin Bessette-Kirton, Jason W. Kean, Jeffrey A. Coe, Francis K. Rengers, Dennis M. Staley

Real-time monitoring of debris-flow velocity and mass deformation from field experiments with high sample rate lidar and video

Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. This process is readily observed, but difficult to study or quantify because of the speed at which it occurs. Many methods for studying debris flows consist of point measurements (e.g., of flow height or basal stresses), which are
Authors
Francis K. Rengers, Thomas Rapstine, Kate E. Allstadt, Michael Olsen, Michael Bunn, Richard M. Iverson, Jason W. Kean, Ben Leshchinsky, Matthew Logan, Mahyar Sharifi-Mood, Maciej Obryk, Joel B. Smith

Looking through the window of disturbance at post-wildfire debris-flow hazards

The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote increases in runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Over a period of several years, referred to as the window of disturbance, the landscap
Authors
Luke McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Hui Tang, Ann Youberg

Topographic change detection at Chalk Cliffs, Colorado, USA, using Airborne LiDAR and UAS-based Structure-from-Motion photogrammetry

The Chalk Cliffs debris-flow site is a small headwater catchment incised into highly fractured and hydrothermally altered quartz monzonite in a semi-arid climate. Over half of the extremely steep basin is exposed bedrock. Debris flows occur multiple times per year in response to rainstorm events, typically during the summer monsoon season. The frequency of debris flows, and the uniformity of the u
Authors
Katherine R Barnhart, Francis K. Rengers, Ghent Jessica N, Gregory E. Tucker, Jeffrey A. Coe, Jason W. Kean, Joel B. Smith, Dennis M. Staley, William Kleiber, Ashton M Wiens

The roles of flow acceleration and deceleration in sediment suspension in the surf zone

Prediction of sediment suspension in the surf zone remains elusive. We explore how suspended sediment concentration at 19 cm above the bed in the mid-surf zone during a storm is influenced by flow acceleration and deceleration. There is a tendency for higher suspended sediment concentrations during onshore flow, with decelerating onshore flows having higher concentrations than steady, accelerating
Authors
Bruce E. Jaffe, SeanPaul La Selle

Post-fire rockfall and debris-flow hazard zonation in the Eagle Creek Fire burn area, Columbia River Gorge, Oregon: a tool for emergency managers and first responders

The Eagle Creek Fire engulfed 48,832 acres (196 km2) within the Columbia River Gorge, Oregon beginning September 2nd and was 100% contained by November 30th, 2017. The Columbia River Gorge area is steep and heavily forested characterized by cliffs and flanking talus slopes, receiving > 100 inches (> 254 cm) of precipitation annually. The Columbia River Gorge is a critical lifeline for Oregon and W
Authors
Nancy C. Calhoun, William J. Burns, S.H. Hayduk, Dennis M. Staley, Jason W. Kean

Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado

The destructive nature of debris flows makes it difficult to quantify flow dynamics with direct instrumentation. For this reason, seismic sensors placed safely away from the flow path are often used to identify the timing and speed of debris flows. While seismic sensors have proven to be a valuable tool for event detection and early warning, their potential for identifying other aspects of debris
Authors
A. Michel, Jason W. Kean, Joel B. Smith, Kate E. Allstadt, Jeffrey A. Coe

Community-based conservation and recovery of native species on Monuriki Island, Fiji

The small uninhabited island of Monuriki (40.4 ha) in western Fiji is of national and international conservation concern for its several protected species. Exotic invasive species and a Category 5 cyclone have exacerbated conservation challenges. The cooperation of local, national, and international stakeholders continues to be crucial in restoration of the island’s native flora and fauna. This su
Authors
Robert N. Fisher, Jone Niukula, Peter S. Harlow, Sia Rasalato, Ramesh Chand, Baravi Thaman, Elenoa Seniloli, Joeli Vadada, Steve Cranwell, J. Jed Brown, Kim Lovich, Nunia Thomas-Moko