Skip to main content
U.S. flag

An official website of the United States government

Natural Hazards

The USGS monitors and conducts research on a wide range of natural hazards to help decision-makers prepare for and respond to hazard events that threaten life and property.

Filter Total Items: 219

What is the origin of the name "Mount St. Helens"?

Some Native Americans of the Pacific Northwest variously called Mount St. Helens 'lawilátɬa ', or 'one from whom smoke comes'. The volcano lawilátɬa is listed (as Lawetlat’la) on the National Register of Historic Places and acknowledged as a Traditional Cultural Property of significance to the Cowlitz Indian Tribe and Confederated Tribes and Bands of the Yakama Nation. The modern name, Mount St...

link

What is the origin of the name "Mount St. Helens"?

Some Native Americans of the Pacific Northwest variously called Mount St. Helens 'lawilátɬa ', or 'one from whom smoke comes'. The volcano lawilátɬa is listed (as Lawetlat’la) on the National Register of Historic Places and acknowledged as a Traditional Cultural Property of significance to the Cowlitz Indian Tribe and Confederated Tribes and Bands of the Yakama Nation. The modern name, Mount St...

Learn More

How far did the ash from Mount St. Helens travel?

The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19, the eruption had stopped. By that time, the ash cloud had spread to the central United States. Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of...

link

How far did the ash from Mount St. Helens travel?

The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19, the eruption had stopped. By that time, the ash cloud had spread to the central United States. Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of...

Learn More

How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?

Before May 18, 1980, Mount St. Helens ' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent...

link

How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?

Before May 18, 1980, Mount St. Helens ' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent...

Learn More

Do earthquakes large enough to collapse buildings and roads accompany volcanic eruptions?

Not usually. Earthquakes associated with eruptions rarely exceed magnitude 5, and these moderate earthquakes are not big enough to destroy buildings and roads. The largest earthquakes at Mount St. Helens in 1980 were magnitude 5, large enough to sway trees and damage buildings, but not destroy them. During the huge eruption of Mount Pinatubo in the Philippines in 1991, dozens of light to moderate...

link

Do earthquakes large enough to collapse buildings and roads accompany volcanic eruptions?

Not usually. Earthquakes associated with eruptions rarely exceed magnitude 5, and these moderate earthquakes are not big enough to destroy buildings and roads. The largest earthquakes at Mount St. Helens in 1980 were magnitude 5, large enough to sway trees and damage buildings, but not destroy them. During the huge eruption of Mount Pinatubo in the Philippines in 1991, dozens of light to moderate...

Learn More

How dangerous are pyroclastic flows?

A pyroclastic flow is a hot (typically >800 °C, or >1,500 °F ), chaotic mixture of rock fragments, gas, and ash that travels rapidly (tens of meters per second) away from a volcanic vent or collapsing flow front. Pyroclastic flows can be extremely destructive and deadly because of their high temperature and mobility. For example, during the 1902 eruption of Mont Pelee in Martinique (West Indies)...

link

How dangerous are pyroclastic flows?

A pyroclastic flow is a hot (typically >800 °C, or >1,500 °F ), chaotic mixture of rock fragments, gas, and ash that travels rapidly (tens of meters per second) away from a volcanic vent or collapsing flow front. Pyroclastic flows can be extremely destructive and deadly because of their high temperature and mobility. For example, during the 1902 eruption of Mont Pelee in Martinique (West Indies)...

Learn More

Can lakes near volcanoes become acidic enough to be dangerous to people and animals?

Yes. Crater lakes atop volcanoes are typically the most acid, with pH values as low as 0.1 (very strong acid). Normal lake waters, in contrast, have relatively neutral pH values near 7.0. The crater lake at El Chichon volcano in Mexico had a pH of 0.5 in 1983 and Mount Pinatubo's crater lake had a pH of 1.9 in 1992. The acid waters of these lakes are capable of causing burns to human skin but are...

link

Can lakes near volcanoes become acidic enough to be dangerous to people and animals?

Yes. Crater lakes atop volcanoes are typically the most acid, with pH values as low as 0.1 (very strong acid). Normal lake waters, in contrast, have relatively neutral pH values near 7.0. The crater lake at El Chichon volcano in Mexico had a pH of 0.5 in 1983 and Mount Pinatubo's crater lake had a pH of 1.9 in 1992. The acid waters of these lakes are capable of causing burns to human skin but are...

Learn More

Can volcanic eruptions endanger helicopters and other aircraft?

Yes. Encounters between aircraft and clouds of volcanic ash are a serious concern. Jet engines and other aircraft components are vulnerable to damage by fine, abrasive volcanic ash, which can drift in dangerous concentrations hundreds of miles downwind from an erupting volcano. In the past, many aircraft have accidentally encountered volcanic ash clouds, and in some cases jet engines have...

link

Can volcanic eruptions endanger helicopters and other aircraft?

Yes. Encounters between aircraft and clouds of volcanic ash are a serious concern. Jet engines and other aircraft components are vulnerable to damage by fine, abrasive volcanic ash, which can drift in dangerous concentrations hundreds of miles downwind from an erupting volcano. In the past, many aircraft have accidentally encountered volcanic ash clouds, and in some cases jet engines have...

Learn More

Lava sampling: Why do we do it?

Hot lava samples provide important information about what's going on in a volcano's magma chambers. We know from laboratory experiments that the more magnesium there is in magma, the hotter it is. Chemical analysis, therefore, provides the means not only to determine the crystallization history of lava but also to establish the temperature at which it was erupted. For example, Kilauea's 1997 lavas...

link

Lava sampling: Why do we do it?

Hot lava samples provide important information about what's going on in a volcano's magma chambers. We know from laboratory experiments that the more magnesium there is in magma, the hotter it is. Chemical analysis, therefore, provides the means not only to determine the crystallization history of lava but also to establish the temperature at which it was erupted. For example, Kilauea's 1997 lavas...

Learn More

Why is it important to monitor volcanoes?

There are 161 potentially active volcanoes in the United States. According to a 2018 USGS assessment , 57 volcanoes are a high threat or very high threat to public safety. Many of these volcanoes have erupted in the recent past and will erupt again in the foreseeable future. As populations increase, areas near volcanoes are being developed and aviation routes are increasing. As a result, more...

link

Why is it important to monitor volcanoes?

There are 161 potentially active volcanoes in the United States. According to a 2018 USGS assessment , 57 volcanoes are a high threat or very high threat to public safety. Many of these volcanoes have erupted in the recent past and will erupt again in the foreseeable future. As populations increase, areas near volcanoes are being developed and aviation routes are increasing. As a result, more...

Learn More

How are volcanic gases measured?

Instruments to measure sulfur dioxide and carbon dioxide can be mounted in aircraft to determine the quantity of gas being emitted on a daily basis. Such instruments can also be used in a ground-based mode. An instrument that detects carbon dioxide can be installed on a volcano and configured to send data continuously via radio to an observatory. Sulfur dioxide in volcanic clouds can also be...

link

How are volcanic gases measured?

Instruments to measure sulfur dioxide and carbon dioxide can be mounted in aircraft to determine the quantity of gas being emitted on a daily basis. Such instruments can also be used in a ground-based mode. An instrument that detects carbon dioxide can be installed on a volcano and configured to send data continuously via radio to an observatory. Sulfur dioxide in volcanic clouds can also be...

Learn More

How can we tell when a volcano will erupt?

Most volcanoes provide warnings before an eruption. Magmatic eruptions involve the rise of magma toward the surface, which normally generates detectable earthquakes. It can also deform the ground surface and cause anomalous heat flow or changes in the temperature and chemistry of the groundwater and spring waters. Steam-blast eruptions, however, can occur with little or no warning as superheated...

link

How can we tell when a volcano will erupt?

Most volcanoes provide warnings before an eruption. Magmatic eruptions involve the rise of magma toward the surface, which normally generates detectable earthquakes. It can also deform the ground surface and cause anomalous heat flow or changes in the temperature and chemistry of the groundwater and spring waters. Steam-blast eruptions, however, can occur with little or no warning as superheated...

Learn More

Is it dangerous to work on volcanoes? What precautions do scientists take?

Volcanoes are inherently beautiful places where forces of nature combine to produce awesome events and spectacular landscapes. For volcanologists, they're FUN to work on! Safety is, however, always the primary concern because volcanoes can be dangerous places. USGS scientists try hard to understand the risk inherent in any situation, then train and equip themselves with the tools and support...

link

Is it dangerous to work on volcanoes? What precautions do scientists take?

Volcanoes are inherently beautiful places where forces of nature combine to produce awesome events and spectacular landscapes. For volcanologists, they're FUN to work on! Safety is, however, always the primary concern because volcanoes can be dangerous places. USGS scientists try hard to understand the risk inherent in any situation, then train and equip themselves with the tools and support...

Learn More