Jason Kean
My research focuses on the processes controlling debris-flow initiation and growth, particularly after wildfire, but also in unburned areas.
This research includes a field component that obtains direct measurements of debris flows in natural settings, a modeling component that seeks to explain the observations, and an applied component that focuses on assessment of debris-flow hazards. My previous research at the USGS focused on river mechanics, including bank erosion and the development of model-based approaches to gage streams and rivers.
Education and Certifications
University of Colorado, Ph.D., 2003, Civil Engineering
University of Colorado, M.S., 1998, Civil Engineering
Cornell University, B.S., 1994, Civil Engineering
Science and Products
Filter Total Items: 24
No Result Found
Filter Total Items: 93
Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs, Colorado, USA
We present a series of debris-flow events and use combined sensor and video data to explore how sediment concentration and triggering rainfall intensity affect the velocity and discharge of debris-flow surges generated by surface-water runoff. We analyze an initial data set of 49 surges from four debris-flow events recorded by a monitoring system at Chalk Cliffs, Colorado and compare...
Authors
Joel B. Smith, Jason W. Kean, Jeffrey A. Coe
An evaluation of debris-flow runout model accuracy and complexity in Montecito, CA: Towards a framework for regional inundation-hazard forecasting
Numerous debris-flow inundation models have been applied retroactively to noteworthy events around the world. While such studies can be useful in identifying controlling factors, calibrating model parameters, and assessing future hazards in specific study areas, model parameters tailored to individual events can be difficult to apply regionally. The advancement of debris-flow modeling...
Authors
Erin Bessette-Kirton, Jason W. Kean, Jeffrey A. Coe, Francis K. Rengers, Dennis M. Staley
Real-time monitoring of debris-flow velocity and mass deformation from field experiments with high sample rate lidar and video
Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. This process is readily observed, but difficult to study or quantify because of the speed at which it occurs. Many methods for studying debris flows consist of point measurements (e.g., of flow height or basal stresses)...
Authors
Francis K. Rengers, Thomas Rapstine, Kate E. Allstadt, Michael Olsen, Michael Bunn, Richard M. Iverson, Jason W. Kean, Ben Leshchinsky, Matthew Logan, Mahyar Sharifi-Mood, Maciej Obryk, Joel B. Smith
Looking through the window of disturbance at post-wildfire debris-flow hazards
The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote increases in runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Over a period of several years, referred to as the window of disturbance...
Authors
Luke McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Hui Tang, Ann Youberg
Topographic change detection at Chalk Cliffs, Colorado, USA, using Airborne LiDAR and UAS-based Structure-from-Motion photogrammetry
The Chalk Cliffs debris-flow site is a small headwater catchment incised into highly fractured and hydrothermally altered quartz monzonite in a semi-arid climate. Over half of the extremely steep basin is exposed bedrock. Debris flows occur multiple times per year in response to rainstorm events, typically during the summer monsoon season. The frequency of debris flows, and the...
Authors
Katherine R Barnhart, Francis K. Rengers, Ghent Jessica N, Gregory E. Tucker, Jeffrey A. Coe, Jason W. Kean, Joel B. Smith, Dennis M. Staley, William Kleiber, Ashton M Wiens
Post-fire rockfall and debris-flow hazard zonation in the Eagle Creek Fire burn area, Columbia River Gorge, Oregon: a tool for emergency managers and first responders
The Eagle Creek Fire engulfed 48,832 acres (196 km2) within the Columbia River Gorge, Oregon beginning September 2nd and was 100% contained by November 30th, 2017. The Columbia River Gorge area is steep and heavily forested characterized by cliffs and flanking talus slopes, receiving > 100 inches (> 254 cm) of precipitation annually. The Columbia River Gorge is a critical lifeline for...
Authors
Nancy C. Calhoun, William J. Burns, S.H. Hayduk, Dennis M. Staley, Jason W. Kean
Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado
The destructive nature of debris flows makes it difficult to quantify flow dynamics with direct instrumentation. For this reason, seismic sensors placed safely away from the flow path are often used to identify the timing and speed of debris flows. While seismic sensors have proven to be a valuable tool for event detection and early warning, their potential for identifying other aspects...
Authors
A. Michel, Jason W. Kean, Joel B. Smith, Kate E. Allstadt, Jeffrey A. Coe
Inundation, flow dynamics, and damage in the 9 January 2018 Montecito Debris-Flow Event, California, USA: Opportunities and challenges for post-wildfire risk assessment
Shortly before the beginning of the winter rainy season, one of the largest fires in California history (Thomas Fire) substantially increased the susceptibility of steep slopes in Santa Barbara and Ventura Counties to debris flows. On January 9, 2018, before the fire was fully contained, an intense burst of rain fell on the portion of the burn area above Montecito, CA. The rainfall and...
Authors
Jason W. Kean, Dennis M. Staley, Jeremy T. Lancaster, Francis K. Rengers, Brian J. Swanson, Jeffrey A. Coe, Janis Hernandez, Aaron Sigman, Kate E. Allstadt, Donald N. Lindsay
Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico
Hurricane Maria hit the island of Puerto Rico on 20 September 2017 and triggered more than 40,000 landslides in at least three-fourths of Puerto Rico’s 78 municipalities. The number of landslides that occurred during this event was two orders of magnitude greater than those reported from previous hurricanes. Landslide source areas were commonly limited to surficial soils but also...
Authors
Erin Bessette-Kirton, Corina Cerovski-Darriau, William Schulz, Jeffrey A. Coe, Jason W. Kean, Jonathan W. Godt, Matthew A. Thomas, K. Stephen Hughes
Long-term soil-water tension measurements in semi-arid environments: A method for automated tensiometer refilling
Tensiometer-equipped data acquisition systems measure and record positive and negative soil-water pressures. These data contribute to studies in hillslope hydrology, including analyses of rainfall runoff, near-surface hydrologic response, and slope stability. However, the unique ability of a tensiometer to rapidly and accurately measure pre- and post-saturation subsurface pressures...
Authors
Joel B. Smith, Jason W. Kean
Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data
Following wildfire, mountainous areas of the western United States are susceptible to debris flow during intense rainfall. Convective storms that can generate debris flows in recently burned areas may occur during or immediately after the wildfire, leaving insufficient time for development and implementation of risk mitigation strategies. We present a method for estimating post-fire...
Authors
Dennis M. Staley, Anne C. Tillery, Jason W. Kean, Luke McGuire, Hannah Pauling, Francis K. Rengers, Joel B. Smith
Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating post‐wildfire debris flow initiation
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte...
Authors
Luke A. McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Benjamin B. Mirus
Science and Products
Filter Total Items: 24
No Result Found
Filter Total Items: 93
Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs, Colorado, USA
We present a series of debris-flow events and use combined sensor and video data to explore how sediment concentration and triggering rainfall intensity affect the velocity and discharge of debris-flow surges generated by surface-water runoff. We analyze an initial data set of 49 surges from four debris-flow events recorded by a monitoring system at Chalk Cliffs, Colorado and compare...
Authors
Joel B. Smith, Jason W. Kean, Jeffrey A. Coe
An evaluation of debris-flow runout model accuracy and complexity in Montecito, CA: Towards a framework for regional inundation-hazard forecasting
Numerous debris-flow inundation models have been applied retroactively to noteworthy events around the world. While such studies can be useful in identifying controlling factors, calibrating model parameters, and assessing future hazards in specific study areas, model parameters tailored to individual events can be difficult to apply regionally. The advancement of debris-flow modeling...
Authors
Erin Bessette-Kirton, Jason W. Kean, Jeffrey A. Coe, Francis K. Rengers, Dennis M. Staley
Real-time monitoring of debris-flow velocity and mass deformation from field experiments with high sample rate lidar and video
Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. This process is readily observed, but difficult to study or quantify because of the speed at which it occurs. Many methods for studying debris flows consist of point measurements (e.g., of flow height or basal stresses)...
Authors
Francis K. Rengers, Thomas Rapstine, Kate E. Allstadt, Michael Olsen, Michael Bunn, Richard M. Iverson, Jason W. Kean, Ben Leshchinsky, Matthew Logan, Mahyar Sharifi-Mood, Maciej Obryk, Joel B. Smith
Looking through the window of disturbance at post-wildfire debris-flow hazards
The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote increases in runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Over a period of several years, referred to as the window of disturbance...
Authors
Luke McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Hui Tang, Ann Youberg
Topographic change detection at Chalk Cliffs, Colorado, USA, using Airborne LiDAR and UAS-based Structure-from-Motion photogrammetry
The Chalk Cliffs debris-flow site is a small headwater catchment incised into highly fractured and hydrothermally altered quartz monzonite in a semi-arid climate. Over half of the extremely steep basin is exposed bedrock. Debris flows occur multiple times per year in response to rainstorm events, typically during the summer monsoon season. The frequency of debris flows, and the...
Authors
Katherine R Barnhart, Francis K. Rengers, Ghent Jessica N, Gregory E. Tucker, Jeffrey A. Coe, Jason W. Kean, Joel B. Smith, Dennis M. Staley, William Kleiber, Ashton M Wiens
Post-fire rockfall and debris-flow hazard zonation in the Eagle Creek Fire burn area, Columbia River Gorge, Oregon: a tool for emergency managers and first responders
The Eagle Creek Fire engulfed 48,832 acres (196 km2) within the Columbia River Gorge, Oregon beginning September 2nd and was 100% contained by November 30th, 2017. The Columbia River Gorge area is steep and heavily forested characterized by cliffs and flanking talus slopes, receiving > 100 inches (> 254 cm) of precipitation annually. The Columbia River Gorge is a critical lifeline for...
Authors
Nancy C. Calhoun, William J. Burns, S.H. Hayduk, Dennis M. Staley, Jason W. Kean
Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado
The destructive nature of debris flows makes it difficult to quantify flow dynamics with direct instrumentation. For this reason, seismic sensors placed safely away from the flow path are often used to identify the timing and speed of debris flows. While seismic sensors have proven to be a valuable tool for event detection and early warning, their potential for identifying other aspects...
Authors
A. Michel, Jason W. Kean, Joel B. Smith, Kate E. Allstadt, Jeffrey A. Coe
Inundation, flow dynamics, and damage in the 9 January 2018 Montecito Debris-Flow Event, California, USA: Opportunities and challenges for post-wildfire risk assessment
Shortly before the beginning of the winter rainy season, one of the largest fires in California history (Thomas Fire) substantially increased the susceptibility of steep slopes in Santa Barbara and Ventura Counties to debris flows. On January 9, 2018, before the fire was fully contained, an intense burst of rain fell on the portion of the burn area above Montecito, CA. The rainfall and...
Authors
Jason W. Kean, Dennis M. Staley, Jeremy T. Lancaster, Francis K. Rengers, Brian J. Swanson, Jeffrey A. Coe, Janis Hernandez, Aaron Sigman, Kate E. Allstadt, Donald N. Lindsay
Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico
Hurricane Maria hit the island of Puerto Rico on 20 September 2017 and triggered more than 40,000 landslides in at least three-fourths of Puerto Rico’s 78 municipalities. The number of landslides that occurred during this event was two orders of magnitude greater than those reported from previous hurricanes. Landslide source areas were commonly limited to surficial soils but also...
Authors
Erin Bessette-Kirton, Corina Cerovski-Darriau, William Schulz, Jeffrey A. Coe, Jason W. Kean, Jonathan W. Godt, Matthew A. Thomas, K. Stephen Hughes
Long-term soil-water tension measurements in semi-arid environments: A method for automated tensiometer refilling
Tensiometer-equipped data acquisition systems measure and record positive and negative soil-water pressures. These data contribute to studies in hillslope hydrology, including analyses of rainfall runoff, near-surface hydrologic response, and slope stability. However, the unique ability of a tensiometer to rapidly and accurately measure pre- and post-saturation subsurface pressures...
Authors
Joel B. Smith, Jason W. Kean
Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data
Following wildfire, mountainous areas of the western United States are susceptible to debris flow during intense rainfall. Convective storms that can generate debris flows in recently burned areas may occur during or immediately after the wildfire, leaving insufficient time for development and implementation of risk mitigation strategies. We present a method for estimating post-fire...
Authors
Dennis M. Staley, Anne C. Tillery, Jason W. Kean, Luke McGuire, Hannah Pauling, Francis K. Rengers, Joel B. Smith
Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating post‐wildfire debris flow initiation
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte...
Authors
Luke A. McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Benjamin B. Mirus