Skip to main content
U.S. flag

An official website of the United States government

Images

Images of Yellowstone.

Filter Total Items: 532
Absolute versus relative earthquake locations associated with 2019 Ridgecrest, California, foreshock and aftershock sequence
Absolute versus relative earthquake locations associated with 2019 Ridgecrest, California, foreshock and aftershock sequence
Absolute versus relative earthquake locations associated with 2019 Ridgecrest, California, foreshock and aftershock sequence
Absolute versus relative earthquake locations associated with 2019 Ridgecrest, California, foreshock and aftershock sequence

Absolute versus relative earthquake locations associated with 2019 Ridgecrest, California, foreshock and aftershock sequence.  Animated GIF image compares the routine catalog earthquake locations with those from an enhanced catalog employing precise relative locations.  Depths are color-coded as shown.  Triangles indicate seismic stations. 

Absolute versus relative earthquake locations associated with 2019 Ridgecrest, California, foreshock and aftershock sequence.  Animated GIF image compares the routine catalog earthquake locations with those from an enhanced catalog employing precise relative locations.  Depths are color-coded as shown.  Triangles indicate seismic stations. 

Determining the height of a geyser eruption with trigonometry
Determining the height of a geyser eruption with trigonometry
Determining the height of a geyser eruption with trigonometry
Determining the height of a geyser eruption with trigonometry

Yellowstone rangers -- and tourists, too! -- can determine the height of a geyser eruption with some simple trigonometry.

Yellowstone rangers -- and tourists, too! -- can determine the height of a geyser eruption with some simple trigonometry.

Experimental apparatus for reacting hot water and rhyolite
Experimental apparatus for reacting hot water and rhyolite
Experimental apparatus for reacting hot water and rhyolite
Experimental apparatus for reacting hot water and rhyolite

Experimental apparatus for reacting hot water and rhyolite. The photo on the left shows the inert gold bags into which the rhyolite fragments and water were inserted. After being sealed, the gold bag is then placed into a steel pressure vessel, which itself is loaded into a furnace (photo on the right).

Experimental apparatus for reacting hot water and rhyolite. The photo on the left shows the inert gold bags into which the rhyolite fragments and water were inserted. After being sealed, the gold bag is then placed into a steel pressure vessel, which itself is loaded into a furnace (photo on the right).

Swath bathymetric image of the Elliott’s Crater explosion crater in Yellowstone Lake
Swath bathymetric image of the Elliott’s Crater explosion crater
Swath bathymetric image of the Elliott’s Crater explosion crater
Swath bathymetric image of the Elliott’s Crater explosion crater

Swath bathymetric image of the Elliott’s Crater explosion crater in Yellowstone Lake.  Inset shows location of the crater and the swath image (red box) within the northern part of the lake.

Swath bathymetric image of the Elliott’s Crater explosion crater in Yellowstone Lake.  Inset shows location of the crater and the swath image (red box) within the northern part of the lake.

Scanning electron microscope image of Yellowstone drill core
Scanning electron microscope image of Yellowstone drill core
Scanning electron microscope image of Yellowstone drill core
Scanning electron microscope image of Yellowstone drill core

The right side of the figure is an image of a small piece of the Y-9 core from the USGS 1967-68 drilling expedition to Yellowstone National Park. The black area was analyzed using a scanning electron microscope (SEM) at the University of Wyoming to determine mineralogy and dispersion of elements.

The right side of the figure is an image of a small piece of the Y-9 core from the USGS 1967-68 drilling expedition to Yellowstone National Park. The black area was analyzed using a scanning electron microscope (SEM) at the University of Wyoming to determine mineralogy and dispersion of elements.

Research drilling in Yellowstone National Park
Research drilling in Yellowstone National Park
Research drilling in Yellowstone National Park
Research drilling in Yellowstone National Park

Research drilling in Yellowstone National Park.  (A) is an image from Fenner (1936) of the drilling setup in the Upper Geyser Basin during the 1929 field season. (B) is an image from White et al. (1975) of the USGS drill rig set up in the Norris Geyser Basin in 1967-68 during a steam eruption.

Research drilling in Yellowstone National Park.  (A) is an image from Fenner (1936) of the drilling setup in the Upper Geyser Basin during the 1929 field season. (B) is an image from White et al. (1975) of the USGS drill rig set up in the Norris Geyser Basin in 1967-68 during a steam eruption.

Earthquake rates over time for Yellowstone Lake 2008-2009 and 2020 seismic swarms
Seismicity rates for Yellowstone Lake earthquake swarms
Seismicity rates for Yellowstone Lake earthquake swarms
Seismicity rates for Yellowstone Lake earthquake swarms

Rate of earthquake occurrence for the 2008-2009 Yellowstone Lake swarm (green) and 2020 swarm (red).

Rate of earthquake occurrence for the 2008-2009 Yellowstone Lake swarm (green) and 2020 swarm (red).

Map of Yellowstone Lake seismic swarms in 2008-2009 and 2020
Map of Yellowstone Lake seismic swarms in 2008-2009 and 2020
Map of Yellowstone Lake seismic swarms in 2008-2009 and 2020
Map of Yellowstone Lake seismic swarms in 2008-2009 and 2020

Map of earthquakes that occurred beneath Yellowstone Lake as parts of seismic swarms in 2008-2009 (green) and 2020 (red).  Orange line is the boundary of Yellowstone Caldera, which formed 631,000 years ago.

Map of earthquakes that occurred beneath Yellowstone Lake as parts of seismic swarms in 2008-2009 (green) and 2020 (red).  Orange line is the boundary of Yellowstone Caldera, which formed 631,000 years ago.

Map of southeastern Idaho showing volcanic rocks related to the Yellowstone hotspot.
Volcanic rocks in SE Idaho that are related to the Yellowstone hotspot
Volcanic rocks in SE Idaho that are related to the Yellowstone hotspot
Volcanic rocks in SE Idaho that are related to the Yellowstone hotspot

Map of southeastern Idaho showing volcanic rocks related to the Yellowstone hotspot. Basalt is shown in red and rhyolite in yellow. Blue circles indicate the location of past Yellowstone calderas; caldera names and approximate ages are shown (Ma = million years old).

Map of southeastern Idaho showing volcanic rocks related to the Yellowstone hotspot. Basalt is shown in red and rhyolite in yellow. Blue circles indicate the location of past Yellowstone calderas; caldera names and approximate ages are shown (Ma = million years old).

Lidar hillshade map of part of the Blackfoot Volcanic Field
Lidar hillshade map of part of the Blackfoot Volcanic Field
Lidar hillshade map of part of the Blackfoot Volcanic Field
Lidar hillshade map of part of the Blackfoot Volcanic Field

Lidar hillshade map of part of the Blackfoot Volcanic Field, showing rhyolite domes and fault scarps.

Lidar hillshade map of part of the Blackfoot Volcanic Field, showing rhyolite domes and fault scarps.

Temperature records from sites on Yellowstone Lake bottom
Temperature records from sites on Yellowstone Lake bottom
Temperature records from sites on Yellowstone Lake bottom
Temperature records from sites on Yellowstone Lake bottom

Year-long (August 2017 to August 2018) temperature records from two hydrothermal vents (“A” and “B”) in the Deep Hole area of Yellowstone Lake.

Year-long (August 2017 to August 2018) temperature records from two hydrothermal vents (“A” and “B”) in the Deep Hole area of Yellowstone Lake.

Yellowstone seismic network
Yellowstone seismic network
Yellowstone seismic network
Yellowstone seismic network

Map of seismic stations in the Yellowstone region, with numbers of channels indicated by number and sensor type by color.  Inverted triangles indicate stations operated by University of Utah Seismograph Stations (UUSS), and squares indicate stations operated by other agencies.

Map of seismic stations in the Yellowstone region, with numbers of channels indicated by number and sensor type by color.  Inverted triangles indicate stations operated by University of Utah Seismograph Stations (UUSS), and squares indicate stations operated by other agencies.

Old Faithful bathhouse during 1914-1933 (top) and 1934-1951 (bottom)
Old Faithful bathhouse during 1914-1933 (top) and 1934-1951 (bottom)
Old Faithful bathhouse during 1914-1933 (top) and 1934-1951 (bottom)
Old Faithful bathhouse during 1914-1933 (top) and 1934-1951 (bottom)

Old Faithful bathhouse as it appeared in 1914-1933 (top) and 1934-1951 (bottom).

Yellowstone map with rhyolite eruptions highlighted
Yellowstone map with rhyolite eruptions highlighted
Yellowstone map with rhyolite eruptions highlighted
Yellowstone map with rhyolite eruptions highlighted

Map of Yellowstone National Park adapted from Christiansen and others (2007). The pink regions are rhyolite flows erupted within Yellowstone caldera; these flows contain 5% to 15% crystals by volume. The purple region is the Obsidian Cliff flow, which contains close to 0% crystals.

Map of Yellowstone National Park adapted from Christiansen and others (2007). The pink regions are rhyolite flows erupted within Yellowstone caldera; these flows contain 5% to 15% crystals by volume. The purple region is the Obsidian Cliff flow, which contains close to 0% crystals.

Obsidian Cliff lava flow, Yellowstone
Obsidian Cliff lava flow, Yellowstone
Obsidian Cliff lava flow, Yellowstone
Obsidian Cliff lava flow, Yellowstone

Photograph of Obsidian Cliff along Grand Loop Road between Norris and Mammoth Hot Springs. Photograph by John Good, U.S. National Park Service, 1965.

Photograph of Obsidian Cliff along Grand Loop Road between Norris and Mammoth Hot Springs. Photograph by John Good, U.S. National Park Service, 1965.

Crested pool, in Upper Geyser Basin near Castle Geyser
Crested pool, in Upper Geyser Basin near Castle Geyser
Crested pool, in Upper Geyser Basin near Castle Geyser
Crested pool, in Upper Geyser Basin near Castle Geyser

Crested Pool, in Upper Geyser Basin near Castle Geyser.  Geyser Hill is in the background, and Old Faithful is the steaming feature at the upper right.  USGS photo by Mike Poland, October 12, 2020.

Crested Pool, in Upper Geyser Basin near Castle Geyser.  Geyser Hill is in the background, and Old Faithful is the steaming feature at the upper right.  USGS photo by Mike Poland, October 12, 2020.

Angular unconformity atop Mount Everts, Yellowstone National Park
Angular unconformity atop Mount Everts, Yellowstone National Park
Angular unconformity atop Mount Everts, Yellowstone National Park
Angular unconformity atop Mount Everts, Yellowstone National Park

An unconformity at the top of Mount Everts is located where the Huckleberry Ridge Tuff, 2.1 million years old, lies directly on top of Cretaceous sediments that are ~60 million years old and greater.  Right at the unconformity are conspicuous orange and black colors.  The orange is oxidation of the sedimentary unit where it is in contact with the ash, whic

An unconformity at the top of Mount Everts is located where the Huckleberry Ridge Tuff, 2.1 million years old, lies directly on top of Cretaceous sediments that are ~60 million years old and greater.  Right at the unconformity are conspicuous orange and black colors.  The orange is oxidation of the sedimentary unit where it is in contact with the ash, whic

Silver Gate landslide complex in Yellowstone National Park
Silver Gate landslide complex in Yellowstone National Park
Silver Gate landslide complex in Yellowstone National Park
Silver Gate landslide complex in Yellowstone National Park

Silver Gate landslide complex in Yellowstone National Park. The jumbled nature of the calcium-carbonate rocks is evidence that the deposit was formed by collapse of a travertine hot-spring terrace that might once have looked like Mammoth Hot Springs does today.

Silver Gate landslide complex in Yellowstone National Park. The jumbled nature of the calcium-carbonate rocks is evidence that the deposit was formed by collapse of a travertine hot-spring terrace that might once have looked like Mammoth Hot Springs does today.

Highway 89 winding through Silver Gate in Yellowstone National Park
Highway 89 winding through Silver Gate in Yellowstone National Park
Highway 89 winding through Silver Gate in Yellowstone National Park
Highway 89 winding through Silver Gate in Yellowstone National Park

A few miles south of Mammoth Hot Springs in Yellowstone National Park, Highway 89 winds through the white/gray jumble of rocks known as the Hoodoos, or Silver Gate, that formed when travertine from Terrace Mountain collapsed in a landslide.

A few miles south of Mammoth Hot Springs in Yellowstone National Park, Highway 89 winds through the white/gray jumble of rocks known as the Hoodoos, or Silver Gate, that formed when travertine from Terrace Mountain collapsed in a landslide.

Panoramic view of Pocket Basin, Yellowstone National Park
Panoramic view of Pocket Basin, Yellowstone National Park
Panoramic view of Pocket Basin, Yellowstone National Park
Panoramic view of Pocket Basin, Yellowstone National Park

Panoramic photo of Pocket Basin, a hydrothermal explosion crater in Yellowstone National Park's Lower Geyser Basin, taken from the northeast rim looking southwest into the crater. Pocket Basin is a U-shaped crater that is dissected on the SW edge by the Firehole River, visible on the far-right of the photo.

Panoramic photo of Pocket Basin, a hydrothermal explosion crater in Yellowstone National Park's Lower Geyser Basin, taken from the northeast rim looking southwest into the crater. Pocket Basin is a U-shaped crater that is dissected on the SW edge by the Firehole River, visible on the far-right of the photo.

GNSS site LKWY, on the north side of Yellowstone Lake
GNSS site LKWY, on the north side of Yellowstone Lake
GNSS site LKWY, on the north side of Yellowstone Lake
GNSS site LKWY, on the north side of Yellowstone Lake

GNSS site LKWY, which was visited in September 2020 to install new GNSS equipment and upgrade the communications for improved data quality.  The site is now capable of collecting several times more observation data then was possible with the original older equipment.

GNSS site LKWY, which was visited in September 2020 to install new GNSS equipment and upgrade the communications for improved data quality.  The site is now capable of collecting several times more observation data then was possible with the original older equipment.