Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2186

Multiphysics modelling in PyLith: Poroelasticity

PyLith, a community, open-source code for modelling quasi-static and dynamic crustal deformation with an emphasis on earthquake faulting, has recently been updated with a flexible multiphysics implementation. We demonstrate the versatility of the multiphysics implementation by extending the code to model fully coupled continuum poromechanics. We verify the newly incorporated physics using standard
Authors
Robert L. Walker, Matthew G. Knepley, Brad T. Aagaard, Charles A. Williams

Toward probabilistic post-fire debris-flow hazard decision support

Post-wildfire debris flows (PFDF) threaten life and property in western North America. They are triggered by short-duration, high-intensity rainfall. Following a wildfire, rainfall thresholds are developed that, if exceeded, indicate high likelihood of a PFDF. Existing weather forecast products allow forecasters to identify favorable atmospheric conditions for rainfall intensities that may exceed
Authors
Nina S. Oakley, Tao Liu, Luke McGuire, Matthew Simpson, Benjamin J. Hatchett, Alexander Tardy, Jason W. Kean, Christopher Castellano, Jayme L. Laber, Daniel Steinhoff

Comment on “A new decade in seismoacoustics (2010–2022)” by Fransiska Dannemann Dugick, Clinton Koch, Elizabeth Berg, Stephen Arrowsmith, and Sarah Albert

An increase in seismic stations also having microbarographs has led to increased interest in the field of seismoacoustics. A review of the recent advances in this field can be found in Dannemann Dugick et al. (2023). The goal of this note is to draw the attention of the readers of Dannemann Dugick et al. (2023) to several additional interactions between the solid Earth and atmosphere that have not
Authors
Adam T. Ringler, Robert E. Anthony, Brian Shiro, Toshiro Tanimoto, David C. Wilson

The spatial distribution of debris flows in relation to observed rainfall anomalies: Insights from the Dolan Fire, California

A range of hydrologic responses can be observed in steep, recently burned terrain, which makes predicting the spatial distribution of large debris flows challenging. Studies from rainfall-induced landslides in unburned areas show evidence of hydroclimatic tuning of landslide triggering, such that the spatial distribution of events is best predicted by the observed rainfall anomaly relative to clim
Authors
David B. Cavagnaro, Scott W. McCoy, Matthew A. Thomas, Jaime Kostelnik, Donald N. Lindsay

Bedrock erosion by debris flows at Chalk Cliffs, Colorado, USA: Implications for bedrock channel evolution

Debris flow erosion into bedrock helps to set the pace of mountain denudation, but there are few empirical observations of this process. We studied the effects of debris flows on bedrock erosion using Structure-From-Motion photogrammetry and multiple real-time monitoring measurements. We found that the distribution of bedrock erosion across the channel cross-section could be generalized as an expo
Authors
Francis K. Rengers, Jason W. Kean, Jeffrey A. Coe, Megan Hanson, Joel Smith

Ground‐motion variability from kinematic rupture models and the implications for nonergodic probabilistic seismic hazard analysis

The variability of earthquake ground motions has a strong control on probabilistic seismic hazard analysis (PSHA), particularly for the low frequencies of exceedance used for critical facilities. We use a crossed mixed‐effects model to partition the variance components from simulated ground motions of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone. Total variability of si
Authors
Grace Alexandra Parker, Morgan P. Moschetti, Eric M. Thompson

Runout model evaluation based on back-calculation of building damage

We evaluated the ability of three debris-flow runout models (RAMMS, FLO2D and D-Claw) to predict the number of damaged buildings in simulations of the 9 January 2019 Montecito, California, debris-flow event. Observations of building damage after the event were combined with OpenStreetMap building footprints to construct a database of all potentially impacted buildings. At the estimated event volum
Authors
Katherine R. Barnhart, Jason W. Kean

Forecasting the inundation of postfire debris flows

In the semi-arid regions of the western United States, postfire debris flows are typically runoff generated. The U.S. Geological Survey has been studying the mechanisms of postfire debris-flow initiation for multiple decades to generate operational models for forecasting the timing, location, and magnitude of postfire debris flows. Here we discuss challenges and progress for extending operational
Authors
Katherine R. Barnhart, Ryan P Jones, David L. George, Francis K. Rengers, Jason W. Kean

A methodology to combine shaking and ground failure models for forecasting seismic damage to buried pipeline networks

How does an earthquake affect buried pipeline networks? It is well known that the seismic performance of buried pipelines depends on ground failures (GFs) as well as strong ground shaking (SGS), but it is unclear how the various types of earthquake hazards should be collectively combined, as existing methodologies tend to examine each of the earthquake hazards separately. In this article, we devel
Authors
N. Simon Kwong, Kishor S. Jaiswal

Predicting burn severity for integration with post-fire debris-flow hazard assessment: A case study from the Upper Colorado River Basin, USA

Background: Burn severity significantly increases the likelihood and volume of post-wildfire debris flows. Pre-fire severity predictions can expedite mitigation efforts because precipitation contributing to these hazards often occurs shortly after wildfires, leaving little time for post-fire planning and management.Aim: The aim of this study was to predict burn severity using pre-fire conditions o
Authors
Adam Gerhard Wells, Todd Hawbaker, John Kevin Hiers, Jason W. Kean, Rachel A. Loehman, Paul F. Steblein

DisasterNet: Causal Bayesian networks with normalizing flows for cascading hazards

Sudden-onset hazards like earthquakes often induce cascading secondary hazards (e.g., landslides, liquefaction, debris flows, etc.) and subsequent impacts (e.g., building and infrastructure damage) that cause catastrophic human and economic losses. Rapid and accurate estimates of these hazards and impacts are critical for timely and effective post-disaster responses. Emerging remote sensing techni
Authors
Xuechun Li, Paula Madeline Burgi, Wei Ma, Haeyoung Noh, David J. Wald, Susu Xu

The 2018 eruption of Kīlauea: Insights, puzzles, and opportunities for volcano science

The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano’s largest summit collapse since at least the nineteenth century. Eruptive activity was doc
Authors
Kyle R. Anderson, Tom Shea, Kendra J. Lynn, Emily Montgomery-Brown, Donald A. Swanson, Matthew R. Patrick, Brian Shiro, Christina A. Neal