Skip to main content
U.S. flag

An official website of the United States government

Images

Images intro.
Filter Total Items: 7147
Small explosion at Halema`uma`u lava lake (Kīlauea, Hawaii)....
Small explosion at Halema`uma`u lava lake (Kīlauea, Hawaii).
Small explosion at Halema`uma`u lava lake (Kīlauea, Hawaii).
Small explosion at Halema`uma`u lava lake (Kīlauea, Hawaii).

At 9:48 PM on Friday, August 23, 2013, a collapse of a piece of the wall above the lava lake in Halema`uma`u triggered a small explosion. The explosion bombarded the rim of Halema`uma`u around the old visitor overlook with molten gobs of spatter as big as dinner plates.

At 9:48 PM on Friday, August 23, 2013, a collapse of a piece of the wall above the lava lake in Halema`uma`u triggered a small explosion. The explosion bombarded the rim of Halema`uma`u around the old visitor overlook with molten gobs of spatter as big as dinner plates.

USGS diver taking a core of a 100-year-old coral in USVI
USGS diver taking a core of a 100-year-old coral in USVI
USGS diver taking a core of a 100-year-old coral in USVI
USGS diver taking a core of a 100-year-old coral in USVI

USGS diver taking a core of a 100-year-old coral to allow reconstruction of past ocean temperatures in St. Thomas, U.S. Virgin Islands.

USGS diver taking a core of a 100-year-old coral to allow reconstruction of past ocean temperatures in St. Thomas, U.S. Virgin Islands.

Aerial view toward the southwest of the actively erupting cone within Veniaminof caldera
Aerial view toward the southwest of the actively erupting cone within Veniaminof caldera
Aerial view toward the southwest of the actively erupting cone within Veniaminof caldera
Aerial view toward the southwest of the actively erupting cone within Veniaminof caldera

Aerial view toward the southwest of the actively erupting cone within Veniaminof caldera. The white steam plume is produced where a lava flow is descending the side of the cone and melting snow and ice. The darker colored, ashy plume is rising in bursts from the active vent.

Aerial view toward the southwest of the actively erupting cone within Veniaminof caldera. The white steam plume is produced where a lava flow is descending the side of the cone and melting snow and ice. The darker colored, ashy plume is rising in bursts from the active vent.

two men wearing hard hats carrying a 4-foot long auger in a grassy field
USGS scientists carrying an auger to a drill hole for seismic survey
USGS scientists carrying an auger to a drill hole for seismic survey
USGS scientists carrying an auger to a drill hole for seismic survey

USGS scientists Robert Sickler (left) and Rufus Catchings (right) carrying an auger to a drill hole for seismic survey.

USGS scientists Robert Sickler (left) and Rufus Catchings (right) carrying an auger to a drill hole for seismic survey.

two men wearing hard hats attaching a section of an auger to a drill
USGS scientists attach an auger to drill for seismic survey
USGS scientists attach an auger to drill for seismic survey
USGS scientists attach an auger to drill for seismic survey

USGS scientists Robert Sickler (below) and Rufus Catchings (standing) attaching a section of an auger bit in order to drill a hole for a seismic survey.

USGS scientists Robert Sickler (below) and Rufus Catchings (standing) attaching a section of an auger bit in order to drill a hole for a seismic survey.

Ocean entry near Kupapa‘u Point hangs on...
Ocean entry near Kupapa‘u Point hangs on
Ocean entry near Kupapa‘u Point hangs on
Ocean entry near Kupapa‘u Point hangs on

The ocean entry east of the National Park boundary near Kupapa‘u Point remains weak, with a wispy plume, as seen in this photo looking southwest along the coast.

The ocean entry east of the National Park boundary near Kupapa‘u Point remains weak, with a wispy plume, as seen in this photo looking southwest along the coast.

Lava lake in Halema‘uma‘u at a relatively high level ...
Lava lake in Halema‘uma‘u at a relatively high level
Lava lake in Halema‘uma‘u at a relatively high level
Lava lake in Halema‘uma‘u at a relatively high level

The lava lake in Halema‘uma‘u was 35 m (115 ft) below the floor of the crater this morning. The lake is about 220 m (720 ft) long and 160 m (525 ft) wide.

The lava lake in Halema‘uma‘u was 35 m (115 ft) below the floor of the crater this morning. The lake is about 220 m (720 ft) long and 160 m (525 ft) wide.

Instead, the lava lake was spattering at points on the west and nor...
Instead, the lava lake was spattering at points on the west and NW ...
Instead, the lava lake was spattering at points on the west and NW ...
Instead, the lava lake was spattering at points on the west and NW ...

Instead, the lava lake was spattering at points on the west and northwest side of the lake. This photo shows the spattering on the lake's northwest side. The pit wall to the right overhangs the lake by about 10 m (33 ft). If the lake continues to rise, pieces of this overhang may collapse (note the cracks at lower right marking planes of weakness).

Instead, the lava lake was spattering at points on the west and northwest side of the lake. This photo shows the spattering on the lake's northwest side. The pit wall to the right overhangs the lake by about 10 m (33 ft). If the lake continues to rise, pieces of this overhang may collapse (note the cracks at lower right marking planes of weakness).

The main entry point of the Kupapa‘u ocean entry comprises a few sm...
The main entry point of the Kupapa‘u ocean entry comprises a few sm...
The main entry point of the Kupapa‘u ocean entry comprises a few sm...
The main entry point of the Kupapa‘u ocean entry comprises a few sm...

The main entry point of the Kupapa‘u ocean entry comprises a few small streams of lava, seen here cascading into the water.

The main entry point of the Kupapa‘u ocean entry comprises a few small streams of lava, seen here cascading into the water.

Rain, steam, smoke, and lava...
Rain, steam, smoke, and lava
Rain, steam, smoke, and lava
Rain, steam, smoke, and lava

The Kahauale‘a 2 flow continues to invade the forest line north of Pu‘u ‘Ō‘ō. Poor weather prevented good views but made for an eerie scene.

The Kahauale‘a 2 flow continues to invade the forest line north of Pu‘u ‘Ō‘ō. Poor weather prevented good views but made for an eerie scene.

Satellite view of activity at summit and east rift zone...
Satellite view of activity at summit and ERZ
Satellite view of activity at summit and ERZ
Satellite view of activity at summit and ERZ

This image was captured on Friday, August 9, by the Advanced Land Imager sensor aboard NASA's Earth Observing 1 satellite, and shows Kīlauea volcano from the summit down the east rift zone. Although this is a false-color image, the color map has been chosen to mimic what the human eye would expect to see.

This image was captured on Friday, August 9, by the Advanced Land Imager sensor aboard NASA's Earth Observing 1 satellite, and shows Kīlauea volcano from the summit down the east rift zone. Although this is a false-color image, the color map has been chosen to mimic what the human eye would expect to see.

Kupapa‘u Point ocean entry weak, but still active...
Kupapa‘u Point ocean entry weak, but still active
Kupapa‘u Point ocean entry weak, but still active
Kupapa‘u Point ocean entry weak, but still active

Using a telephoto camera lens, an HVO scientist captured this view of the Kupapa‘u Point ocean entry on the morning of August 7. Although no lava flow activity was observed on the coastal plain near the ocean entry, small streams of lava still poured into the sea.

Using a telephoto camera lens, an HVO scientist captured this view of the Kupapa‘u Point ocean entry on the morning of August 7. Although no lava flow activity was observed on the coastal plain near the ocean entry, small streams of lava still poured into the sea.

Zooming his camera in even more.... An up-close view of the eastern...
Zooming his camera in even more.... An up-close view of the eastern...
Zooming his camera in even more.... An up-close view of the eastern...
Zooming his camera in even more.... An up-close view of the eastern...

Zooming his camera in even more.... An up-close view of the easternmost lava streams entering the ocean. Reminder to all lava observers: Peering through a telephoto lens is the safest way to view Kīlauea Volcano's ocean entry.

Zooming his camera in even more.... An up-close view of the easternmost lava streams entering the ocean. Reminder to all lava observers: Peering through a telephoto lens is the safest way to view Kīlauea Volcano's ocean entry.

Lava enters ocean at Kupapa‘u Point, Kīlauea Volcano, Hawai‘i. Phot...
Lava enters ocean at Kupapa‘u Point, Kīlauea, Hawai‘i. Photographed...
Lava enters ocean at Kupapa‘u Point, Kīlauea, Hawai‘i. Photographed...
Lava enters ocean at Kupapa‘u Point, Kīlauea, Hawai‘i. Photographed...

Lava enters ocean at Kupapa‘u Point, Kīlauea Volcano, Hawai‘i. Photographed with a telephoto lens, the safest way to view the interaction of lava and seawater on the edge of an active delta.

Lava enters ocean at Kupapa‘u Point, Kīlauea Volcano, Hawai‘i. Photographed with a telephoto lens, the safest way to view the interaction of lava and seawater on the edge of an active delta.

SWFL seismic station, on the crater rim of Mount St. Helens, was re...
SWFL seismic station, on the crater rim of Mount St. Helens, was re...
SWFL seismic station, on the crater rim of Mount St. Helens, was re...
SWFL seismic station, on the crater rim of Mount St. Helens, was re...

This summer, crews made significant modifications to a monitoring station on the southwest flank of Mount St. Helens, greatly improving its operability in winter.

This summer, crews made significant modifications to a monitoring station on the southwest flank of Mount St. Helens, greatly improving its operability in winter.

Annual surveys of water channels in the crater of Mount St. Helens ...
Annual surveys of water channels in the crater of Mount St. Helens ...
Annual surveys of water channels in the crater of Mount St. Helens ...
Annual surveys of water channels in the crater of Mount St. Helens ...

Crews survey Loowit Creek channel and other points inside the crater. Elevation information is used to make a longitudinal profile of the channel, characterizing areas where sediment is either deposited or transported and how the channel is changing with time. View to the north, with Spirit Lake and Mount Rainier in the background.

Crews survey Loowit Creek channel and other points inside the crater. Elevation information is used to make a longitudinal profile of the channel, characterizing areas where sediment is either deposited or transported and how the channel is changing with time. View to the north, with Spirit Lake and Mount Rainier in the background.

Loowit Creek, originating in the crater of Mount St. Helens, is mon...
Loowit Creek is monitored for turbidity
Loowit Creek is monitored for turbidity
Loowit Creek is monitored for turbidity

Loowit Creek is fed from a mixture of springs (groundwater) and Crater Glacier meltwater. Observations are made of stream turbidity, or of the amount of fine particles suspended in the water. View is to the south, toward the crater.

Loowit Creek is fed from a mixture of springs (groundwater) and Crater Glacier meltwater. Observations are made of stream turbidity, or of the amount of fine particles suspended in the water. View is to the south, toward the crater.

Image shows a scientific instrument on the slopes of Mount St Helens
Precise Surveying of Mount St. Helens Crater with RTK-GPS Technology
Precise Surveying of Mount St. Helens Crater with RTK-GPS Technology
Precise Surveying of Mount St. Helens Crater with RTK-GPS Technology

A survey base station is established using a RTK-GPS receiver with mobile units to collect data points in and around the crater. Information will be used to monitor surface changes, deformation, erosion and aggradation inside the crater. This type of technology is precise to the centimeter. View is to the south of Mount St.

A survey base station is established using a RTK-GPS receiver with mobile units to collect data points in and around the crater. Information will be used to monitor surface changes, deformation, erosion and aggradation inside the crater. This type of technology is precise to the centimeter. View is to the south of Mount St.

Taking the pulse of Mount St. Helens Volcano, Washington....
Taking the pulse of Mount St. Helens Volcano, WA.
Taking the pulse of Mount St. Helens Volcano, WA.
Taking the pulse of Mount St. Helens Volcano, WA.

Monitoring and upgrading ground-based sensor networks at the most active volcano in the Cascades is an on-going process. Crews made significant modifications to a seismic monitoring station on the southwest flank of Mount St. Helens, greatly improving its operability in winter.

Monitoring and upgrading ground-based sensor networks at the most active volcano in the Cascades is an on-going process. Crews made significant modifications to a seismic monitoring station on the southwest flank of Mount St. Helens, greatly improving its operability in winter.

Helicopter gives SWFL "swing set" a lift, Mount St. Helens....
Helicopter gives SWFL "swing set" a lift, Mount St. Helens.
Helicopter gives SWFL "swing set" a lift, Mount St. Helens.
Helicopter gives SWFL "swing set" a lift, Mount St. Helens.

Monitoring stations need to be portable. Weighing about 500 pounds, this "swing set" structure can be airlifted into place or moved, as volcano monitoring needs change. An additional 1,000 pounds of equipment will need to be added to make the station fully functional.

Monitoring stations need to be portable. Weighing about 500 pounds, this "swing set" structure can be airlifted into place or moved, as volcano monitoring needs change. An additional 1,000 pounds of equipment will need to be added to make the station fully functional.

Touchdown at monitoring site in Mount St. Helens' crater....
Touchdown at monitoring site in Mount St. Helens' crater.
Touchdown at monitoring site in Mount St. Helens' crater.
Touchdown at monitoring site in Mount St. Helens' crater.

Crews access remote monitoring sites by helicopter. Pictured out the window of the helicopter is a GPS and camera station, dedicated to remotely monitoring changes inside the crater and under the crater floor.

Crews access remote monitoring sites by helicopter. Pictured out the window of the helicopter is a GPS and camera station, dedicated to remotely monitoring changes inside the crater and under the crater floor.