Skip to main content
U.S. flag

An official website of the United States government

Images

Images intro.
Filter Total Items: 7145
Rain gauge installed in Glenwood Canyon, Colorado
Rain gauge installed in Glenwood Canyon, Colorado
Rain gauge installed in Glenwood Canyon, Colorado
Rain gauge installed in Glenwood Canyon, Colorado

Rain gauge installed in Glenwood Canyon, Colorado. After the 2020 Grizzly Creek fire, scientists installed a network of rain gauges and soil moisture sensors throughout the rugged burn area. These instruments provide real-time data on rainfall intensity and duration, which are critical factors in determining the likelihood of a debris flow. 

Rain gauge installed in Glenwood Canyon, Colorado. After the 2020 Grizzly Creek fire, scientists installed a network of rain gauges and soil moisture sensors throughout the rugged burn area. These instruments provide real-time data on rainfall intensity and duration, which are critical factors in determining the likelihood of a debris flow. 

Rain Gauge installed after Grizzly Creek fire
Rain Gauge installed after Grizzly Creek fire
Rain Gauge installed after Grizzly Creek fire
Rain Gauge installed after Grizzly Creek fire

Rain Gauge installed after the 2020 Grizzly Creek fire in Glenwood Canyon, Colorado. Scientists installed a network of rain gauges and soil moisture sensors throughout the rugged burn area. These instruments provide real-time data on rainfall intensity and duration, which are critical factors in determining the likelihood of a debris flow. 

Rain Gauge installed after the 2020 Grizzly Creek fire in Glenwood Canyon, Colorado. Scientists installed a network of rain gauges and soil moisture sensors throughout the rugged burn area. These instruments provide real-time data on rainfall intensity and duration, which are critical factors in determining the likelihood of a debris flow. 

Rain gauge in Glenwood Canyon
Rain gauge in Glenwood Canyon
Rain gauge in Glenwood Canyon
Rain gauge in Glenwood Canyon

Rain gauge in Glenwood Canyon, Colorado. After the 2020 Grizzly Creek fire, scientists installed a network of rain gauges and soil moisture sensors throughout the rugged burn area. These instruments provide real-time data on rainfall intensity and duration, which are critical factors in determining the likelihood of a debris flow. 

Rain gauge in Glenwood Canyon, Colorado. After the 2020 Grizzly Creek fire, scientists installed a network of rain gauges and soil moisture sensors throughout the rugged burn area. These instruments provide real-time data on rainfall intensity and duration, which are critical factors in determining the likelihood of a debris flow. 

An amphibious vessel call a LARC (Lighter Amphibious Resupply Cargo) at the USACE Field Research Facility
USACE LARC used for DUNEX field work
USACE LARC used for DUNEX field work
USACE LARC used for DUNEX field work

USGS Research Geologist Jennifer Miselis will conduct shoreface geophysical surveys at the USACE Field Research Facility during DUNEX aboard the LARC, which is shown here being set up for the survey.

USGS Research Geologist Jennifer Miselis will conduct shoreface geophysical surveys at the USACE Field Research Facility during DUNEX aboard the LARC, which is shown here being set up for the survey.

USGS DUNEX geophysical survey underway off of a USACE amphibious vessel in Duck, North Carolina
USGS DUNEX Survey underway off of a USACE amphibious vessel
USGS DUNEX Survey underway off of a USACE amphibious vessel
USGS DUNEX Survey underway off of a USACE amphibious vessel

A geophysical instrument (chirp) is towed in the water (yellow instrument) from a floating sled to acquire information about the geology below the seafloor in Duck, NC as part of DUNEX. The USACE Field Research Facility can be seen in the background in the upper left corner.

A geophysical instrument (chirp) is towed in the water (yellow instrument) from a floating sled to acquire information about the geology below the seafloor in Duck, NC as part of DUNEX. The USACE Field Research Facility can be seen in the background in the upper left corner.

several people stand in front of a large research vessel wearing masks
Seismic science crew and the R/V Sproul
Seismic science crew and the R/V Sproul
Seismic science crew and the R/V Sproul

In the background is the Research Vessel (R/V) Robert Gordon Sproul, operated by Scripps Institution of Oceanography (SIO).

In the background is the Research Vessel (R/V) Robert Gordon Sproul, operated by Scripps Institution of Oceanography (SIO).

a person smiles in front of an all terrain vehicle on a beach wearing a backpack
RC Mickey with UTV at Jupiter Beach
RC Mickey with UTV at Jupiter Beach
RC Mickey with UTV at Jupiter Beach

Oceanographer RC Mickey in front of a USGS UTV (utility task vehicle) carrying GPS equipment. He is collecting GPS data for location and elevation of sea turtle crawls and associated beach profiles along Jupiter Beach and Juno Beach, FL.

Oceanographer RC Mickey in front of a USGS UTV (utility task vehicle) carrying GPS equipment. He is collecting GPS data for location and elevation of sea turtle crawls and associated beach profiles along Jupiter Beach and Juno Beach, FL.

A utility task vehicle parked on a beach with plants in the background, seaweed on the ground, and a cloudy sky above.
UTV in front of beach scarp
UTV in front of beach scarp
UTV in front of beach scarp

UTV (utility task vehicle) parked in front of a beach scarp used to collect data that is used in cooperation with FWC, FWS, USGS, and USFSP to understand sea turtle nesting behavior in response to beach renourishment with the goal of advising engineers on how to develop more turtle friendly nourishment desig

UTV (utility task vehicle) parked in front of a beach scarp used to collect data that is used in cooperation with FWC, FWS, USGS, and USFSP to understand sea turtle nesting behavior in response to beach renourishment with the goal of advising engineers on how to develop more turtle friendly nourishment desig

People on the deck of a research vessel handling a piece of scientific equipment
Deploying seismic streamer
Deploying seismic streamer
Deploying seismic streamer

Science crew from the USGS Pacific Coastal and Marine Science Center work on deployment of seismic streamer on deck of R/V Robert Gordon Sproul. Green cable is the hydrophone streamer and a "bird" is being attached to control depth in the water.

Science crew from the USGS Pacific Coastal and Marine Science Center work on deployment of seismic streamer on deck of R/V Robert Gordon Sproul. Green cable is the hydrophone streamer and a "bird" is being attached to control depth in the water.

A series of three images arranged side by side, one a map of an island, one zoomed to the island study area, and a plot of data.
Puerto Rico study area and Hurricane María path and data
Puerto Rico study area and Hurricane María path and data
Puerto Rico study area and Hurricane María path and data

(Left) Map of Puerto Rico showing study area location (red box), the oceanographic buoys (orange triangles), and the track of María with eye timing and locations (black dots) in 6-hour increments and the wind radii of 64-knot winds (gray circular outlines).

(Left) Map of Puerto Rico showing study area location (red box), the oceanographic buoys (orange triangles), and the track of María with eye timing and locations (black dots) in 6-hour increments and the wind radii of 64-knot winds (gray circular outlines).

Scientific equipment, including a box and a cylindrical object, attached to a green platform on the deck of a boat
ADCP ready for deployment
ADCP ready for deployment
ADCP ready for deployment

An Acoustic Doppler Current Profiler (ADCP) on the deck of the R/V Sallenger ready to be deployed in the water. The ADCP now sits on the bottom of the ocean off Madeira beach, Florida in 5m water depth.

An Acoustic Doppler Current Profiler (ADCP) on the deck of the R/V Sallenger ready to be deployed in the water. The ADCP now sits on the bottom of the ocean off Madeira beach, Florida in 5m water depth.

two people with SCUBA gear in the water next to a scientific instrument on the surface
Divers prepare to deploy ADCP
Divers prepare to deploy ADCP
Divers prepare to deploy ADCP

Scientific divers BJ Reynolds and Hunter Wilcox prepare to lower an Acoustic Doppler Current Profiler (ADCP) into the water. The ADCP now sits on the bottom of the ocean off Madeira beach, Florida in 5m water depth.

Scientific divers BJ Reynolds and Hunter Wilcox prepare to lower an Acoustic Doppler Current Profiler (ADCP) into the water. The ADCP now sits on the bottom of the ocean off Madeira beach, Florida in 5m water depth.

NSHMP Models, Codes and Catalogs - National Seismic Hazard Mapping Project
The map is based on the USGS models for the conterminous U.S. (2018), Hawaii (1998), and Alaska (2007).
The map is based on the USGS models for the conterminous U.S. (2018), Hawaii (1998), and Alaska (2007).
The map is based on the USGS models for the conterminous U.S. (2018), Hawaii (1998), and Alaska (2007).

2018 Long-term National Seismic Hazard Map. Earthquake hazard map showing peak ground accelerations having a 2 percent probability of being exceeded in 50 years, for a firm rock site.  The map is based on the most recent USGS models for the conterminous U.S.

2018 Long-term National Seismic Hazard Map. Earthquake hazard map showing peak ground accelerations having a 2 percent probability of being exceeded in 50 years, for a firm rock site.  The map is based on the most recent USGS models for the conterminous U.S.

sun setting over the ocean viewed from the back deck of a research vessel
Sunset on the R/V Sproul
Sunset on the R/V Sproul
Sunset on the R/V Sproul

Looking across the back deck/stern of the R/V Robert Gordon Sproul. The wire going through the block in the A-frame leads to the CHIRP sonar fish towed in the water. Oil platforms are shown in the distance.

Looking across the back deck/stern of the R/V Robert Gordon Sproul. The wire going through the block in the A-frame leads to the CHIRP sonar fish towed in the water. Oil platforms are shown in the distance.

A man, wearing safety gear and holding a pen, sits at a work station on a boat with a folder open in front of him.
Monitoring equipment in the ocean
Monitoring equipment in the ocean
Monitoring equipment in the ocean

Ocean engineer Gerry Hatcher, of the USGS Pacific Coastal and Marine Science Center (PCMSC), sits at a desk on board the USGS boat Sallenger. He and a team of scientists from PCMSC and sister team St.

Ocean engineer Gerry Hatcher, of the USGS Pacific Coastal and Marine Science Center (PCMSC), sits at a desk on board the USGS boat Sallenger. He and a team of scientists from PCMSC and sister team St.

person walkiing with 20-foot pole in the desert
Death Valley Fault DEM Collection
Death Valley Fault DEM Collection
Death Valley Fault DEM Collection

Nadine Reitman walks with a camera on a 20-foot pole to generate high resolution DEM’s of the Death Valley fault, May, 2021.

Nadine Reitman walks with a camera on a 20-foot pole to generate high resolution DEM’s of the Death Valley fault, May, 2021.

Photograph of cabinets in the Woods Hole Coastal and Marine Science Center Sediment Analysis Lab
Woods Hole Sed Lab's collection of sieves.
Woods Hole Sed Lab's collection of sieves.
Woods Hole Sed Lab's collection of sieves.

Photograph of cabinets in the Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory contaning the lab's collection of sieves.

Photograph of cabinets in the Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory contaning the lab's collection of sieves.

Photograph of Woods Hole Coastal and Marine Science Center's Sed Lab equipment
Woods Hole Sed Lab's Horiba LA-960 laser defraction unit
Woods Hole Sed Lab's Horiba LA-960 laser defraction unit
Woods Hole Sed Lab's Horiba LA-960 laser defraction unit

Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory's Horiba LA-960 laser diffraction unit with slurry sampler (USGS laboratory equipment number WH-SED-Horiba-LA9601).

Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory's Horiba LA-960 laser diffraction unit with slurry sampler (USGS laboratory equipment number WH-SED-Horiba-LA9601).

Photograph of Beckman Coulter Multisizer 3
Woods Hole Sediment Analysis Lab's Beckman Coulter Multisizer 3
Woods Hole Sediment Analysis Lab's Beckman Coulter Multisizer 3
Woods Hole Sediment Analysis Lab's Beckman Coulter Multisizer 3

Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory's Beckman Coulter Multisizer 3 (USGS laboratory equipment number WH-SED-BeckmanCoulter-Multisizer1).

Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory's Beckman Coulter Multisizer 3 (USGS laboratory equipment number WH-SED-BeckmanCoulter-Multisizer1).

Photograph of Rigaku Miniflex 600
Woods Hole Sediment Analysis Lab's Rigaku Miniflex 600
Woods Hole Sediment Analysis Lab's Rigaku Miniflex 600
Woods Hole Sediment Analysis Lab's Rigaku Miniflex 600

Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory's Rigaku Miniflex 600 (USGS laboratory equipment number WH-SED-Rigaku-Miniflex1).

Woods Hole Coastal and Marine Science Center Sediment Analysis Laboratory's Rigaku Miniflex 600 (USGS laboratory equipment number WH-SED-Rigaku-Miniflex1).