Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during June 2020.
Michael Poland
Mike Poland is a research geophysicist with the Cascades Volcano Observatory and the current Scientist-in-Charge of the Yellowstone Volcano Observatory.
Mike's area of specialization is volcano geodesy, which emphasizes the surface deformation and gravity fields associated with volcanic activity. This work involves the use of space-based technologies, like Interferometric Synthetic Aperture Radar (InSAR), as well as ground-based techniques, like microgravity surveys. Mike has taken part in studies on a variety of volcanic systems in the United States, including Mount St. Helens and other volcanoes of the Pacific Northwest, Kilauea and Mauna Loa volcanoes in Hawaii, and the Yellowstone caldera. His recent work has focused on using gravity change over time to understand the character of the fluids that drive volcanic unrest, and also on the potential of satellite data to improve forecasts of future changes in volcanic activity.
Professional Experience
U.S. Geological Survey - Yellowstone Volcano Observatory: Scientist-in-Charge (2017 - present)
U.S. Geological Survey – Cascades Volcano Observatory: Research Geophysicist (2015 - present)
U.S. Geological Survey – Hawaiian Volcano Observatory: Research Geophysicist (2005 - 2015)
U.S. Geological Survey – Cascades Volcano Observatory: Research Geophysicist (2002 - 2005)
Department of Geology, Clark College (Vancouver, Washington): Instructor (2004)
Arizona State University, Department of Geological Sciences: Graduate Teaching/Research Assoc. (1997 - 2001)
Education and Certifications
Arizona State University: Ph.D. (2001), Geological Sciences
University of California, Davis: B.S. (1997), Geology
Affiliations and Memberships*
American Geophysical Union (AGU)
Geological Society of America (GSA)
International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)
Honors and Awards
Fellow, Geological Society of America, 2021
Science and Products

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during June 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during May 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during May 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during April 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during April 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during March 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during March 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during February 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during February 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during January 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during January 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during 2019, with an emphasis on the month of December.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during 2019, with an emphasis on the month of December.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of November 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of November 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of October 2019
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of October 2019

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of September 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of September 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of August 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of August 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of July 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of July 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of June, 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of June, 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of May, 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of May, 2019.

Horizontal displacements from campaign (black vectors) and continuous (red vectors, with station names given) GPS stations, as well as vertical displacements (indicated by color of GPS station symbol) near South Sister, Oregon. Length of arrow gives amount of horizontal displacement, with scale in lower left showing an arrow length
Horizontal displacements from campaign (black vectors) and continuous (red vectors, with station names given) GPS stations, as well as vertical displacements (indicated by color of GPS station symbol) near South Sister, Oregon. Length of arrow gives amount of horizontal displacement, with scale in lower left showing an arrow length

Time series of vertical displacements during April–October 2017 at four GPS stations on the north side of Yellowstone Lake
linkTime series of vertical displacements during April–October 2017 at four GPS stations (LAK1, LAK2, LKWY, and SEDG) on the north side of Yellowstone Lake. Downward trends indicate subsidence and upward trends show uplift. Uplift “spikes” in late September are related to inclement weather and do not show true deformation. Error bars are one standard deviation.
Time series of vertical displacements during April–October 2017 at four GPS stations on the north side of Yellowstone Lake
linkTime series of vertical displacements during April–October 2017 at four GPS stations (LAK1, LAK2, LKWY, and SEDG) on the north side of Yellowstone Lake. Downward trends indicate subsidence and upward trends show uplift. Uplift “spikes” in late September are related to inclement weather and do not show true deformation. Error bars are one standard deviation.

InSAR image Kīlauea, Hawai‘i, Mar. 2011. Kamoamoa fissure trace is indicated by the red line.
InSAR image Kīlauea, Hawai‘i, Mar. 2011. Kamoamoa fissure trace is indicated by the red line.

Map of Kīlauea Volcano showing the south-southeast motion, as recorded by continuous GPS sites (arrows), and earthquake epicenter between February 1-3, 2010.
Map of Kīlauea Volcano showing the south-southeast motion, as recorded by continuous GPS sites (arrows), and earthquake epicenter between February 1-3, 2010.
Lava from the Pu'u 'Ō'ō-Kupaianaha eruption, active since 1983, enters the ocean on the south flank of Kīlauea Volcano.
Lava from the Pu'u 'Ō'ō-Kupaianaha eruption, active since 1983, enters the ocean on the south flank of Kīlauea Volcano.

Yellow-bellied Marmot stands on its hind legs in Yellowstone National Park. Photo by D. Dzurisin.
Yellow-bellied Marmot stands on its hind legs in Yellowstone National Park. Photo by D. Dzurisin.

The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.
The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.
The 2014 annual report for the Hawaiian Volcano Observatory
Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012
Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014
Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery
The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned
Lava lake level as a gauge of magma reservoir pressure and eruptive hazard
Volcano monitoring from space
Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking
Hawaiian volcanoes: From source to surface
Using near-real-time monitoring data from Pu'u 'Ō'ō vent at Kīlauea Volcano for training and educational purposes
Delicate balance of magmatic-tectonic interaction at Kilauea Volcano, Hawai`i, revealed from slow slip events: Chapter 13
Hawaiian fissure fountains: Quantifying vent and shallow conduit geometry, episode 1 of the 1969-1974 Mauna Ulu eruption
Science and Products

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during June 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during June 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during May 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during May 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during April 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during April 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during March 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during March 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during February 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during February 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during January 2020.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during January 2020.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during 2019, with an emphasis on the month of December.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, gives an overview of activity at Yellowstone during 2019, with an emphasis on the month of December.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of November 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of November 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of October 2019
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of October 2019

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of September 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of September 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of August 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of August 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of July 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of July 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of June, 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of June, 2019.

Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of May, 2019.
Mike Poland, Scientist-in-Charge of the Yellowstone Volcano Observatory, describes activity at Yellowstone during the month of May, 2019.

Horizontal displacements from campaign (black vectors) and continuous (red vectors, with station names given) GPS stations, as well as vertical displacements (indicated by color of GPS station symbol) near South Sister, Oregon. Length of arrow gives amount of horizontal displacement, with scale in lower left showing an arrow length
Horizontal displacements from campaign (black vectors) and continuous (red vectors, with station names given) GPS stations, as well as vertical displacements (indicated by color of GPS station symbol) near South Sister, Oregon. Length of arrow gives amount of horizontal displacement, with scale in lower left showing an arrow length

Time series of vertical displacements during April–October 2017 at four GPS stations on the north side of Yellowstone Lake
linkTime series of vertical displacements during April–October 2017 at four GPS stations (LAK1, LAK2, LKWY, and SEDG) on the north side of Yellowstone Lake. Downward trends indicate subsidence and upward trends show uplift. Uplift “spikes” in late September are related to inclement weather and do not show true deformation. Error bars are one standard deviation.
Time series of vertical displacements during April–October 2017 at four GPS stations on the north side of Yellowstone Lake
linkTime series of vertical displacements during April–October 2017 at four GPS stations (LAK1, LAK2, LKWY, and SEDG) on the north side of Yellowstone Lake. Downward trends indicate subsidence and upward trends show uplift. Uplift “spikes” in late September are related to inclement weather and do not show true deformation. Error bars are one standard deviation.

InSAR image Kīlauea, Hawai‘i, Mar. 2011. Kamoamoa fissure trace is indicated by the red line.
InSAR image Kīlauea, Hawai‘i, Mar. 2011. Kamoamoa fissure trace is indicated by the red line.

Map of Kīlauea Volcano showing the south-southeast motion, as recorded by continuous GPS sites (arrows), and earthquake epicenter between February 1-3, 2010.
Map of Kīlauea Volcano showing the south-southeast motion, as recorded by continuous GPS sites (arrows), and earthquake epicenter between February 1-3, 2010.
Lava from the Pu'u 'Ō'ō-Kupaianaha eruption, active since 1983, enters the ocean on the south flank of Kīlauea Volcano.
Lava from the Pu'u 'Ō'ō-Kupaianaha eruption, active since 1983, enters the ocean on the south flank of Kīlauea Volcano.

Yellow-bellied Marmot stands on its hind legs in Yellowstone National Park. Photo by D. Dzurisin.
Yellow-bellied Marmot stands on its hind legs in Yellowstone National Park. Photo by D. Dzurisin.

The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.
The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.
The 2014 annual report for the Hawaiian Volcano Observatory
Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012
Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014
Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery
The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned
Lava lake level as a gauge of magma reservoir pressure and eruptive hazard
Volcano monitoring from space
Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking
Hawaiian volcanoes: From source to surface
Using near-real-time monitoring data from Pu'u 'Ō'ō vent at Kīlauea Volcano for training and educational purposes
Delicate balance of magmatic-tectonic interaction at Kilauea Volcano, Hawai`i, revealed from slow slip events: Chapter 13
Hawaiian fissure fountains: Quantifying vent and shallow conduit geometry, episode 1 of the 1969-1974 Mauna Ulu eruption
*Disclaimer: Listing outside positions with professional scientific organizations on this Staff Profile are for informational purposes only and do not constitute an endorsement of those professional scientific organizations or their activities by the USGS, Department of the Interior, or U.S. Government